

VI-138 - MAPEAMENTO DO USO E COBERTURA DO SOLO DO ENTORNO DA REPRESA DO RIO TIBAGI POR SENSORIAMENTO REMOTO E DIAGNÓSTICO DA QUALIDADE DA ÁGUA DA REPRESA

Emily Giany Assunção⁽¹⁾

Engenheira Civil pela Universidade do Oeste Paulista (UNOESTE). Mestre em Engenharia de Edificações e Saneamento pela Universidade Estadual de Londrina (UEL). Doutoranda em Engenharia Civil na UEL.

Mariane Libório Cardoso

Engenheira Ambiental pela Universidade Tecnológica Federal do Paraná (UTFPR). Mestranda em Engenharia de Edificações e Saneamento na UEL.

Carlos José Alves Nunes

Engenheiro Civil pela Universidade Estadual de Londrina (UEL).

Paulo Henrique Marques de Castro

Geógrafo pela Universidade Estadual de Londrina (UEL). Mestre em Geografia Engenharia pela UEL. Doutor em Geografia pela UEL.

Vilson Gomes da Assunção Júnior

Engenheiro Civil pela Universidade Estadual de Londrina (UEL). Mestrando em Engenharia de Edificações e Saneamento na UEL. Engenheiro Civil da Companhia de Saneamento do Paraná.

Endereço⁽¹⁾: Departamento de Construção Civil - Rod. Celso Garcia Cid PR445 Km380 Campus Universitário Cx Postal 10.011 - Bairro Perobal – Londrina – PR - CEP 86057-970 – Brasil - Tel: (43) 3371-5826 e-mail: emily.ega@hotmail.com

RESUMO

A qualidade da água está diretamente relacionada ao uso que se faz do ambiente. Considerando a intervenção ocorrida em 2012 na bacia hidrográfica do rio Tibagi, com a instalação da Usina Hidrelétrica Mauá, faz-se necessária a realização de diagnósticos e investigações sobre a qualidade da água e uso e cobertura do solo a fim de subsidiar futuras tomadas de decisão em questões importantes para promoção do bem-estar da sociedade. Este trabalho teve como objetivo elaborar o mapeamento do uso e cobertura do solo do entorno da represa do rio Tibagi / Usina Hidrelétrica de Mauá por sensoriamento remoto e realizar o diagnóstico da qualidade da água da represa. O mapeamento foi realizado com o programa SPRING, empregando a classificação automática supervisionada pelo método MaxVer, de imagens do satélite Landsat-8, resultando nas classes de solo exposto, água, agricultura, vegetação arbórea e vegetação rasteira, que corresponderam respectivamente, às porcentagens de área de 0,8; 4,6; 13,6; 31,8 e 49,2%. Para a determinação do Índice de Qualidade da Água foram analisados os parâmetros de coliformes termotolerantes, DBO, fósforo total, nitrogênio total, OD, pH, sólidos totais, temperatura e turbidez, calculando o Índice por 4 métodos diferentes. Com os resultados obtidos, concluiu-se que os valores de IQA obtidos apresentaram classificação boa a ótima, variando entre 79 e 90. O valor de fósforo total não atendeu ao valor limite especificado pela Resolução CONAMA 357 / 2005, de 0,050 mg L-1 para águas doces de classe 2. As possíveis influências das atividades antrópicas na qualidade da água podem estar associadas predominantemente às atividades de agropecuária (parcela de 62,8%) e de reflorestamento (parcela de 31,8%). Há, portanto, necessidade de se monitorar, controlar e investigar as causas e consequências associadas às concentrações deste parâmetro observadas na água da represa, a fim de garantir a preservação do ambiente aquático e minimizar os riscos à saúde pública.

PALAVRAS-CHAVE: Sensoriamento remoto, imagens de satélite, Índice de Qualidade da Água - IQA

INTRODUÇÃO

Essencial à vida, a água constitui elemento necessário para quase todas as atividades humanas, sendo, ainda, um recurso natural limitado, dotado de um valor econômico e de domínio público (BRASIL, 1997).

Devido à propriedade de solvente universal e capacidade de transporte de partículas no escoamento, a água incorpora para si diversas impurezas, estabelecendo sua qualidade. Sob outra ótica, a qualidade da água depende de condições naturais em função da cobertura e composição do solo, bem como de condições

antrópicas relacionadas ao uso e ocupação do solo nas bacias hidrográficas, que podem interferir na qualidade da água de forma pontual ou difusa (VON SPERLING, 1996)

Os *softwares* de tratamento de dados e imagens obtidos por satélites de sensoriamento remoto vêm sendo utilizados, de forma crescente, uma vez que são capazes de distinguir áreas e eventos de desmatamento, queimadas, enchentes, agricultura, mineração, entre outros. Estes *softwares* são considerados ferramentas estratégicas potenciais para o monitoramento ambiental, em escalas locais e globais, devido à rapidez, eficiência, periodicidade e abrangência.

Apesar destes atributos, os dados e imagens de sensoriamento remoto são ainda pouco explorados na área técnica-científica, devido à falta de difusão e conhecimento destas ferramentas e tecnologias na área. Por outro lado, sabe-se que a associação / correlação destas informações a dados técnicos específicos coletados in loco nas mais variadas áreas da ciência (biologia, química, geografia e história) podem ampliar as formas de contribuição, uso e aplicação destas tecnologias.

Com o grande aumento e diversificação das fontes poluidoras e da degradação dos corpos hídricos, é primordial o acompanhamento das alterações da qualidade da água, assim é possível fundamentar medidas de proteção e até mesmo de recuperação ambiental, visando a garantia dos usos atuais e futuros desse recurso natural.

Assim, devido a intervenção ocorrida entre 2010 e 2012 na bacia hidrográfica do rio Tibagi – BHT, com o represamento do rio entre Telêmaco Borba e Ortigueira, para a instalação da Usina Hidrelétrica Mauá – UHE Mauá e sua relevância, uma vez o rio Tibagi é um manancial de abastecimento, o presente estudo teve como objetivo elaborar o mapeamento do uso e cobertura do solo do entorno da represa do rio Tibagi / Usina Hidrelétrica de Mauá por sensoriamento remoto e realizar o diagnóstico da qualidade da água da represa.

MATERIAIS E MÉTODOS

COLETA DE DADOS PARA DIAGNÓSTICO DA QUALIDADE DA ÁGUA DO RESERVATÓRIO DA UHE MAUÁ

Para avaliar a qualidade da água do Reservatório da UHE Mauá, foram realizadas 02 (duas) coletas (em duas diferentes profundidades) no centro do reservatório (ponto 8), localizado distante das margens a fim de evitar influencias por eventuais contaminações (pontual/difusa e/ou natural/antrópica) que pudessem afetar a representatividade dos resultados.

Assim, uma coleta foi realizada a 30 centímetros de profundidade denominada Prof. I. A outra profundidade de coleta, conforme recomendado por IAP (2004) para amostragem em reservatórios, seria a Prof. II, calculada como a média entre as profundidades máxima no ponto de amostragem e da zona eufótica. No entanto, como a profundidade máxima neste ponto ultrapassou 50 m e a profundidade da zona eufótica foi de 1,10 m, a Prof. II resultaria maior que 25 m. Infelizmente, devido ao alcance máximo da garrafa de Van Dorn, a coleta foi realizada a 22 m de profundidade.

Além disso, com o intuito de se obter uma representação mais abrangente da qualidade da água do reservatório, e não apenas pontual, foi constituída uma amostra denominada "composta", contendo 400 mL de 24 amostras coletadas no Reservatório da UHE Mauá. Para a seleção dos pontos de amostragem foram criados 12 círculos concêntricos distanciados de 500 metros, a partir do ponto central do reservatório, de onde foram coletadas duas amostras de cada círculo, coletados à profundidade do disco de secchi, totalizando 24 pontos. Na Figura 1 é ilustrada a localização dos 24 pontos de amostragem.

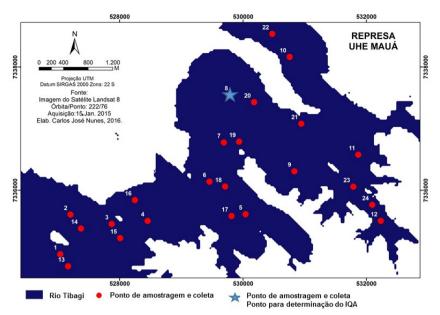


Figura 1 - Localização dos 24 pontos de amostragem e coleta de dados na represa da UHE Mauá

ÍNDICE DE QUALIDADE DA ÁGUA – IQA

O cálculo do IQA foi realizado de acordo com método proposto pela da Companhia Ambiental do Estado de São Paulo – CETESB, adaptado do IQA - National Sanitation Foundation - NSF dos Estados Unidos da América, que atribui os pesos da Tabela 1. O IQA foi calculado pelo produtório ponderado dos fatores de qualidade das variáveis que integram o índice, de acordo com:

$$\mathit{IQA} = \prod_{i=1}^{\mathit{N}} q_i^{\mathit{wi}}$$

em que:

IQA = índice de qualidade da água, número de 0 a 100;

N = número de parâmetros:

qi = qualidade do i-ésimo parâmetro, um número entre 0 e 100, obtido da respectiva "curva média de variação de qualidade", em função de sua concentração ou medida e;

wi = peso correspondente ao i-ésimo parâmetro, um número entre 0 e 1, atribuído em função da sua importância para a conformação global de qualidade.

Tabela 1: Peso atribuído a cada parâmetro de cálculo do IQA, de acordo com a CETESB (2004).

PARÂMETRO	PESO (w)
Coliformes termotolerantes	0,15
pН	0,12
DBO5	0,10
Nitrogênio total	0,10
Fósforo total	0,10
Diferença de temperatura	0,10
Turbidez	0,08
Sólidos totais	0,08
OD	0,17

Fonte: CETESB (2004)

Na Tabela 2 são apresentadas as faixas de classificação de qualidade para o método proposto.

Tabela 2: Faixa de pontuação do IQA e categorias de classificação.

	3000 000 - Q 0 0000 B0000 000 00030000300
CATEGORIA	FAIXA DE PONTUAÇÃO DE IQA
Ótima	80 – 100
Boa	52 – 79
Regular	37 – 51
Ruim	20 – 36
Péssima	0 – 19

Fonte: CETESB (2004)

MAPEAMENTO

Para a realização do mapa de uso e cobertura do solo foi utilizado um sistema sensor do tipo passivo, devido à facilidade de aquisição das imagens, adquiridas do banco de dados americano Earth Explorer, da United States Geological Survey (Pesquisas Geológicas dos EUA) - USGS, que mantém um acervo desses dados.

As imagens utilizadas foram as do satélite Landsat-8, datadas do dia 11 de agosto de 2015. O critério para a seleção das imagens utilizada foi preferencialmente serem no mesmo período da coleta de amostras do reservatório e apresentarem o mínimo de nuvens possível.

A metodologia empregada foi a de classificação automática supervisionada pelo método MaxVer e ponto/órbita 222/77, com treinamento do programa SPRING em cinco classes: água, vegetação arbórea, vegetação rasteira, agricultura e solo exposto. A projeção utilizada foi a UTM, datum SIRGAS 2000, zona 22 S, e as bases cartográficas de referência, como o mapa político-administrativo do Paraná e o shape de hidrografia foram obtidas do Instituto de Terras, Cartografia e Ciências - ITCG.

Como as coletas de água foram realizadas à montante da UHE Mauá, no represamento do rio Tibagi, e a Bacia Hidrográfica do rio Tibagi - BHT abrange uma área muito grande, optou-se por fazer o recorte da bacia para uma área de mapeamento que contivesse todos os afluentes ao rio na área represada.

RESULTADOS

DIAGNÓSTICO DA QUALIDADE DA ÁGUA

Na Tabela 3 são apresentados os resultados dos parâmetros analisados, os valores de IQA e a classificação correspondente para as amostras denominadas: Prof. 30 cm, Prof. II e Composta.

Tabela 3: Resultados dos parâmetros analisados, valores e classificação de IQA.

PARÂMETRO	AMOSTRAS		
	30 cm	Prof. II	Composta
Temperatura (°C)	27,9	24,3	27,9
pH	7,40	7,10	7,40
Turbidez (NTU)	14,45	34,80	13,70
OD (mg L ⁻¹)	8,16	6,02	8,10
DBO5, 20 □ C (mg L ⁻¹)	1,10	0,90	1,40
Nitrogênio Total (mg L ⁻¹)	0,80	1,60	0,80
Fósforo Total (mg L ⁻¹)	0,057	0,103	0,050
Sólidos Totais (mg L ⁻¹)	61,0	78,5	61,0
E. coli (NMP 100 mL ⁻¹)	2,0	3,0	2,0
Valores de IQA	89	82	89
Classificação do IQA	Ótima	Ótima	Ótima

Observa-se que os valores dos parâmetros analisados das amostras 30 cm e composta (Tabela 3) resultaram muito próximos, o que revela a uniformidade da qualidade da água no reservatório uma vez que para composição da amostra composta foram coletadas 24 amostras à profundidade do disco de Secchi, que variou entre 0,85 e 1,10 m.

Analisando os valores dos parâmetros da Tabela 3 para as diferentes profundidades, pode-se observar que, como esperado, os processos que ocorrem naturalmente nas águas superficiais tais como incidência da radiação solar, troca gasosa, fotossíntese e biodegradação aeróbia, influíram nos valores dos parâmetros temperatura, OD, pH e DBO correspondentes à amostra da Prof. II e apresentaram valores inferiores quando comparadas às demais amostras. Por outro lado, os valores de *E. coli*, nitrogênio, fósforo, turbidez e sólidos aumentaram com a profundidade, devido provavelmente, aos efeitos da ação da gravidade sob o material em suspensão e regime semi-lêntico.

Comparando-se os resultados da Tabela 3 com os valores limites da resolução CONAMA 357/2005, pode-se constatar que com exceção do fósforo para a amostra da Prof. II que tem valor limitado a 0,050 mg L⁻¹ para ambientes intermediários (semi-lênticos), todas as amostras atenderam aos padrões de enquadramento para águas doces de classe 2 estabelecidos pela mesma resolução.

MAPA DE USO E COBERTURA DO SOLO

O mapa do uso e cobertura do solo do entorno da represa do rio Tibagi / Usina Hidrelétrica de Mauá é apresentado na Figura 2 e os dados compilados para as classes estabelecidas são apresentados na Tabela 4.

Tabela 4: Número de pixels, área e porcentagem correspondente para cada classe do mapa temático.

Classes	Número de pixels	Área (km²)	Porcentagem (%)
Solo Exposto	12.099	10,9	0,8
Água	66.391	59,8	4,6
Agricultura	194.309	175,0	13,6
Vegetação Arbórea	455.456	410,2	31,8
Vegetação Rasteira	704.112	634,1	49,2
Área de Estudo (Total)	1.432.367	1.290	100,0

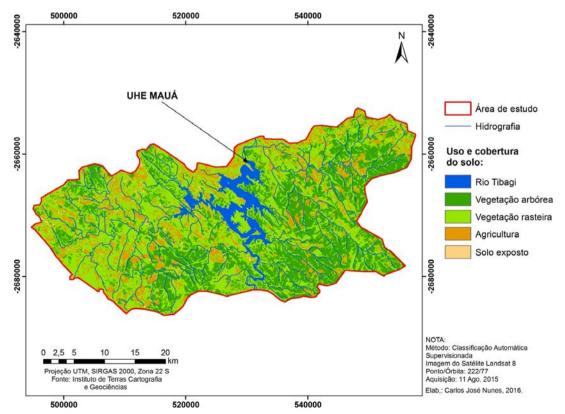


Figura 2 - Mapa Temático de Uso e Cobertura do Solo no entorno da represa do rio Tibagi / Usina hidrelétrica de Mauá

As imagens do satélite Landsat-8 possuem uma resolução de 30x30 m, limitando a correta identificação dos pixels e por este motivo, não foi possível, neste trabalho, obter um nível de detalhamento a ponto de diferenciar algumas classes. Assim, foram priorizadas as classes de maior importância e fácil distinção pelo software. Desta forma, não foi incluído no mapeamento a classe de ocupação urbana, por corresponder a uma parcela muito pequena, pois a precisão não era suficiente para se classificar com confiabilidade pixels específicos, podendo causar interferências em outras classes.

Não foi possível também diferenciar floresta de reflorestamento. No entanto, a região em questão é muito conhecida pela produção de celulose, devido a uma fábrica muito grande implantada em Telêmaco Borba. Portanto, a parcela de vegetação arbórea, correspondente a 32% da área, deve-se, provavelmente à plantação de Eucaliptus sp. e Pinus sp., e de Araucárias.

A parcela de solo exposto pode se referir tanto à área dedicada à pecuária quanto à de agricultura, como a terra preparada para plantio. Porém por representar um valor muito pequeno (0,8% da área), acredita-se que não afetará tão expressivamente a qualidade da água, podendo ser desprezada.

A classe denominada vegetação rasteira com 49,2% da área, engloba, segundo CNEC (2004), tanto a área de pequenos arbustos e gramíneas (das espécies Poaceae), quanto a área de pecuária e agricultura, principalmente destinada ao cultivo de grãos que formam arbustos, como a soja e o feijão.

Portanto, devido à parcela de vegetação rasteira e agricultura (incluindo também a de pecuária) corresponderem a mais da metade da área de cobertura do mapa (62,8%), espera-se que estas classes tenham a maior influência na qualidade da água da região de estudo.

CONCLUSÕES

Para as condições do estudo proposto, concluiu-se que:

A variação da profundidade de coleta da amostra para a determinação do IQA interferiu na sua pontuação e classificação;

As possíveis influências das atividades antrópicas na qualidade da água podem estar associadas predominantemente às atividades agropecuária (parcela de 62,8%) e de reflorestamento (parcela de 31,8%);

Há necessidade de se monitorar, controlar e investigar as causas e consequências associadas às concentrações de fósforo observadas na água da represa a fim de garantir a preservação do ambiente aquático e minimizar os riscos à saúde pública;

O mapeamento do uso e cobertura do solo do entorno da represa do rio Tibagi / Usina Hidrelétrica de Mauá por sensoriamento remoto permitiu identificar as classes: solo exposto, água, agricultura, vegetação arbórea e vegetação rasteira que corresponderam respectivamente, às porcentagens de área de 0,8; 4,6; 13,6; 31,8 e 49,2 %.

AGRADECIMENTOS

À Companhia de Saneamento do Paraná – SANEPAR.

REFERÊNCIAS BIBLIOGRÁFICAS

- 1. APHA, AWWA, WEF, Standard Methods For The Examination Of Water & Wastewater. 21st Edition, 2005.
- 2. BRASIL. Lei Federal nº 9.433, de 8 de janeiro de 1997. Política Nacional e Sistema Nacional de Gerenciamento de Recursos Hídricos. Brasília, DF, 1997.
- 3. BRASIL. MINISTÉRIO DO MEIO AMBIENTE. CONSELHO NACIONAL DO MEIO AMBIENTE. Resolução nº 357, 17 de março de 2005. Dispõe sobre a classificação dos corpos de água e diretrizes

- ambientais para o seu enquadramento, bem como estabelece as condições e padrões de lançamento de efluentes, e dá outras providências. Brasília, 2005.
- 4. CETESB (Companhia de Tecnologia de Saneamento Ambiental), São Paulo. Relatório De Qualidade das Águas Interiores do Estado de São Paulo. São Paulo: CETESB, 2004.
- 5. CNEC. Estudos de Impacto Ambiental e Relatório de Impacto Ambiental da UHE Mauá EIA/RIMA. 2004.
- 6. IAP Instituto Ambiental do Paraná. Monitoramento da qualidade das águas dos reservatórios do estado do Paraná, no período de 1999 a 2004. p.13p. + anexos. Curitiba, 2004.
- 7. SPERLING, M. V. Introdução à qualidade das águas e ao tratamento de esgotos. 2ª ed., Belo Horizonte, Departamento de Engenharia Sanitária e Ambiental; Universidade Federal de Minas Gerais, 1996.