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Abstract: Riparian zones consist of important environmental regions, specifically to maintain the
quality of water resources. Accurately mapping forest vegetation in riparian zones is an important
issue, since it may provide information about numerous surface processes that occur in these areas.
Recently, machine learning algorithms have gained attention as an innovative approach to extract
information from remote sensing imagery, including to support the mapping task of vegetation areas.
Nonetheless, studies related to machine learning application for forest vegetation mapping in the
riparian zones exclusively is still limited. Therefore, this paper presents a framework for forest
vegetation mapping in riparian zones based on machine learning models using orbital multispectral
images. A total of 14 Sentinel-2 images registered throughout the year, covering a large riparian
zone of a portion of a wide river in the Pontal do Paranapanema region, São Paulo state, Brazil, was
adopted as the dataset. This area is mainly composed of the Atlantic Biome vegetation, and it is near
to the last primary fragment of its biome, being an important region from the environmental planning
point of view. We compared the performance of multiple machine learning algorithms like decision
tree (DT), random forest (RF), support vector machine (SVM), and normal Bayes (NB). We evaluated
different dates and locations with all models. Our results demonstrated that the DT learner has,
overall, the highest accuracy in this task. The DT algorithm also showed high accuracy when applied
on different dates and in the riparian zone of another river. We conclude that the proposed approach
is appropriated to accurately map forest vegetation in riparian zones, including temporal context.
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1. Introduction

Monitoring the spatial-temporal dynamics of land cover and use in riparian zones is essential
to understand the numerous surface processes that can occur in these areas [1]. Deforestation and
inadequate use are some of the most notorious problems in many environmentally fragile riparian zones.
These regions have an important role in environmental conservation, providing multiple ecosystem
services [2]. With the increasing loss worldwide of wetlands and riparian areas [2], an accurate
mapping of forest vegetation is required to define strategies for both monitoring and conservation.
Fine-scale mapping of forest vegetation in riparian zones may provide information to support different
tasks, such as maintaining the quality of water resources. Riparian zones offer an ecological function
essential to wildlife and human communities that are gathered around its proximities. In this regard,
investigating methods that provide an accurate description of these forest fragments is a relevant
scientific task.

Satellite imagery consists of a substantial source of information to map forests since they regularly
register a wide geographic area and are particularly suited to support the changing detection tasks [3].
Moreover, satellite imagery is a potential solution for mapping land use at several cartographic scales [4].
An important orbital platform for monitoring these areas is the Sentinel-2. Offering multispectral
images with 10–60 m spatial, 13 spectral bands, and 5-day temporal resolutions, Sentinel-2 images
opened many opportunities to investigate the fine-scale mapping of vegetation, including inside the
riparian zones. However, digital image classification is a task whose accuracy strongly depends on
the availability of data and on the applied method used to perform it [5]. Image classification tasks
were initially performed with conventional supervised methods like maximum likelihood, minimum
distance, Mahalanobis distance, and others, as well as with unsupervised methods like K-means and
isodatdo a [6]. Nonetheless, new approaches are required to aid this issue, especially because of the
technological advances that permitted the construction of sensors able to acquire images with high
spatial-spectral-temporal resolutions, thus, producing a large amount of data to be analyzed.

Machine learning (ML) techniques are a current and promising alternative to process remote
sensing data [7] and are applied in many data processing and analysis tasks [8]. These learners
can be used to model different sets-of-data using a robust approach [7,9]. Moreover, ML methods
allow establishing non-parametric and nonlinear relationships between the independent variables and
dependent variables (usually the target), resulting in overall better performance when compared to the
conventional linear models [10]. Regardless, as no universal learner exists, multiple tests are needed
for different types of applications.

Several approaches have been developed with ML and multispectral imagery for mapping the
spatial distribution of vegetation areas. A study [11] investigated the performance of the random
forest (RF) and support vector machine (SVM) algorithms for high-resolution multispectral imagery
classification. These images were acquired with embedded sensors in an Unmanned Aerial Vehicle
(UAV). The reliability of ML learners was also verified in the mapping task of invasive trees in riparian
zones, also with UAV-imagery [12]. Adopting visible and near-infrared data, spectral and texture
features were computed at various scales (10, 30, 45, 60), and the most relevant variable (or combination
of variables) was identified with a supervised classification model based on the RF algorithm.

A recent study [13] pointed out that ML algorithms can be used for mapping vegetation areas, and they
are especially applicable when training data consist of a large number of observations and covariates. More
recently, another research [14] evaluated several multi-temporal Sentinel-2 images, making combinations of
spectral bands and applying principal component analysis and tasseled cap transformations. They used it
as input to four ML techniques (SVM, nearest neighbor—KNN, RF, and classification trees—CT), aiming to
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separate vegetation species. The best results were returned by SVM, but the authors pointed out that further
work is needed to determine whether these results are replicable in other vegetation types and regions.
Combinations of spectral bands from Sentinel-2 data were also tested [15] to evaluate the performance of
the RF for mapping tree species on different dates, and obtained an averaged accuracy of 80%.

Although remote sensing images have proved their potential to support mapping tasks into different
contexts, like land use and land cover, its application for forest vegetation mapping in the riparian zones
exclusively is still limited. Up to our knowledge, few studies were conducted [11,12] in this manner, and they
were mainly with UAV-imagery. UAV-imagery provides an important data source for many applications,
like high-detailed vegetation maps, but it is worth mentioning that these platforms may not be attractive
when wide geographic areas require to be mapped such as riparian zones in many tropical countries.

The use of machine learning methods with orbital data, like the free-available satellite images
from Sentinel-2, can be a promissory strategy to map-wide areas using a low-cost approach. Sentinel-2
data has been evaluated with ML algorithms for mapping different types of vegetation [16,17], as other
targets [18], and it was considered efficient in these studies. But, the knowledge about the capacity of
current ML models to identify the spatial distribution of forest vegetation in riparian zones based on
medium spatial resolution imagery is limited yet. A recent study [14] used Sentinel 2 imagery to map
vegetation, but it is unclear whether these results can be replicated into other riparian zones.

To fulfill the aforementioned gap, we propose an easily reproducible framework to map forest
vegetation in riparian zones, based on Sentinel-2 (MSI) multispectral images and processed by ML
algorithms. We hypothesize that some machine learning algorithms may be more appropriate than
others to potentially map forest-type in those areas with interference from seasonal changes. We
then verified the -generalization capability of all trained models using images from different dates
and geographic areas. The traditional classification and segmentation methods may not present a
consistent accuracy or even provide the same robustness as a machine learning evaluation. In this
sense, when monitoring these areas alongside different dates, governmental technical-agencies, and
entities responsible for the forest management may adopt the proposed approach.

2. Materials and Methods

Our method was divided into four main stages (Figure 1). Initially, we performed the organization
of a database composed of 14 multispectral Sentinel-2 imagery, acquired alongside a one-year-period,
for the area of interest. These images were pre-processed to convert their original value into surface
reflectance values [14].
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We defined as a study area the riparian zone within 1 km distance from the Paraná river margin
(Figure 2), and for the last step the riparian zone selected was within 1 km of another river, known as the
Paranapanema. We manually labeled the features (forest and non-forest) in a geographical information
system (GIS) environment and separated the data in both training and testing sets. We performed
the detection of forest vegetation adopting different algorithms. The performance of the learners was
compared against one another using classification evaluation metrics.
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2.1. Study Area

Our study area was the riparian zone of the Paraná River (Figure 2) located in the state of São
Paulo, Brazil. This region is known for the presence of one of the last original fragments of the Atlantic
Biome in Brazil. This riparian zone has an area of 152.91 km2 and 468.46 km of the perimeter, and the
Paraná River is considered the most important river from this geographic region, dividing the states of
São Paulo and Mato Grosso do Sul. The riparian zone is formed by both Cerrado (Brazilian Savanna)
and Atlantic Forest biomes. This area is representative of most large rivers in our ecosystem, as it still
possesses natural vegetation alongside deforestation, agricultural and urban environments within
its area.

2.2. Image Preprocessing and Labeled Features

Our experiment considered a total of 14 Sentinel-2 images (Table 1). All scenes were available
with little or without cloud interference alongside the riparian zone. Also, most of the cloud-cover
was formed by thin clouds, which although may impact the algorithm’s performance, served as an
additional challenge for the algorithm. A total of 13 Sentinel-2 images were acquired during June 2018
and June 2019 (one per month), and a scene from June 2020 was used to test the performance of the
algorithms in a different period. Therefore, we worked with images representing all seasons of the year
(summer, winter, autumn, and spring). Each scene was downloaded from the United States Geological
Survey (USGS) EarthExplorer Platform. Sentinel-2 images are collected by its MSI sensor and available
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in Digital Number (DN), in 12-bit radiometric resolution, in both 10, 20, and 60 m resolutions. They
were projected to the WGS-84 UTM 22 S zone system.

Table 1. Information regarding the 14 Sentinel-2 images used in this study.

Date Season in the South Hemisphere

20 June 2018 Autumn

20 July 2018 Winter

29 August 2018 Winter

23 September 2018 Spring

28 October 2018 Spring

27 November 2018 Spring

02 December 2018 Spring

31 January 2019 Summer

10 February 2019 Summer

22 March 2019 Autumn

26 April 2019 Autumn

21 May 2019 Autumn

15 June 2019 Autumn

24 June 2020 Winter

For all images, we performed the radiometric correction using the SNAP 7.1.0 software with
the Sen2Cor Toolbox. It was necessary to minimize the atmospheric influences, and, for that, we
adopted the recommendations listed in the Sentinel-2 User Handbook [19]. The SNAP tool finds the
parameters for both radiometric and atmospheric corrections automatically. These values are calculated
by default when the software reads the metadata file of each scene. In this regard, aerosol values
corresponding to rural areas were adopted; and atmospheric conditions were defined to coincide with
the time that the image was recorded. Ozone content in the atmosphere was also automatically defined.
A correction using the Cirrus band (Band 10) was not performed since is not available for the 10 m
bands at the moment [19]. We used the DSM (Digital Surface Model) option input for terrain correction.
The remaining parameters were left at their respective default values.

For our experimental setup, we labeled the forest-type data as training and testing samples using
a GIS tool. The collection of the labeled information was performed with help of a specialist in the area,
alongside additional high-resolution imagery from other datasets and imaging (both orbital and aerial)
performed within the riparian zone in the last years. Regarding different types of forest vegetation
present in the riparian zone, we considered only the fragments formed by forest physiognomies from
the Atlantic Biome and, in fewer proportions, Brazillian Savanna, commonly encountered in the area,
and associated with wetlands. In this aspect, since this type of forest offers more protection to these
fragile ecosystems than the arbustive or grassland-types, it was identified during the labeling process
and incorporated in the analysis.

A total of 855 features (polygons) of forest-type vegetation and 855 features of non-forest vegetation
(e.g., water, soil, grass, and other land covers) were annotated on Sentinel-2 images, resulting in a total
of 1710 polygons with different sizes, occupying almost 3,322.3 ha. Details regarding these samples
and their spatial distribution are presented in Table 2 and Figure 3 below. Although, by the proximity
between polygons, it may seem that some of which are present in both subsets. However, this occurred
only during the representation of small polygons in the figure scale, as both training and testing sets
were composed of entirely different features. To investigate the performance of the machine learning
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algorithms in detecting forest vegetation, we used 50% of the dataset (polygon features) for training
and 50% for testing the algorithms.

Table 2. Description of the training, validation, and testing sets of the dataset.

Dataset Number of Samples
(Features—Polygon) Area (ha) Number of Pixels

Training (Forest) 430 839.00 8,390,000

Training (Non-Forest) 425 679.05 6,790,500

Testing (Forest) 447 893.40 8,934,000

Testing (Non-Forest) 408 910.85 9,108,500
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The sample size and quality of training data have generally had a large impact on the classification
accuracy [20]. In this regard, we divided the dataset while ensuring that both training and testing
sets contained similar sampling patterns, being representatives of all conditions observed in the
area during labeling. This division was applied with the assistance of a widget incorporated in the
Orange open-source software, and we integrated it with the sampling extraction method in the QGIS
open-source software environment.

2.3. Machine Learning Algorithms

The open-source software Orfeo Toolbox 7.1.0 was used to apply and evaluate the performance of
different ML models in classifying forest vegetation in the riparian zones using Sentinel-2 multispectral
images. As stated, our dataset was composed of two classes: forest vegetation and non-forest vegetation,
and it was used both training and testing the algorithms to ensure an adequate comparison among
algorithms. We conducted a comparative study using five machine learning algorithms, including
random forest [21], decision tree [22], support vector machine [23], and normal-gaussian Bayes [9].

The training and testing datasets were divided in the proportion of 50:50. The training set was
then used to train and set up the hyperparameters of the chosen algorithms. In this sense, we divided
the training set with the holdout method, using 10% of its data to validate it. After defining the best
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parameters for each model, we used the testing-set containing 50% of the original data, with samples
not used during the training and validation process, to evaluate the real performance of our models.
As explained by [24], the even division between samples is necessary to have a good balance between
both sets. This ensures a reliable estimation of the models’ performance, as the imbalance between
datasets may harm the predictions.

The fine-tuning process of all the algorithms was performed until no improvements in the
F1-measure value were identified. The same dataset (training and testing) was adopted for all
algorithms. The final configuration of the algorithms is in Table 3. Once the hyperparameters of each
algorithm were defined, the testing dataset was used to verify its real performance. Metrics like global
accuracy, F1-measure, precision, and recall were then adopted to evaluate them. These metrics were
calculated considering the classification results of all of the labeled pixels in the testing-set. They also
represent the average classification values between both classes.

Table 3. ML algorithms adopted to classify forest vegetation in riparian zones.

Algorithm Hyperparameters

RF

Maximum depth of the tree = 5
Minimum number of samples in each node = 10
Termination criteria for regression tree = 0
Cluster possible values of a categorical variable into k <= clusters to find a suboptimal split = 10
Size of the randomly selected subset of features at each tree node = 0
Maximum number of trees in the forest = 100
Sufficient accuracy = 0.01

SVM

SVM Kernel Type = Linear
SVM Model Type = C support vector classification
Cost parameter C = 1
Cost parameter Nu = 0.5
Parameters optimization = Off
Probability estimation = Off

DT

Maximum depth of the tree = 10
Minimum number of samples in each node = 10
Termination criteria for regression tree = 0.01
Cluster possible values of a categorical variable into k <= cat clusters to find a suboptimal split = 10

NB The algorithm has no parameters for changing

Our experiment was set up to compare the performance of the machine learning models and
determine the overall best classifier. This comparison was performed regarding only the spectral
bands (blue, green, red, and near-infrared) from the 10 m spatial resolution images, as it provided
more detailed samples. Additionally, we conducted tests to evaluate the generalization capability of
all trained models using images from dates and geographic areas. The different proposed scenarios
were related to a) evaluating different dates acquired during a one-year time interval (each image was
evaluated individually by all of the machine learning models), and; b) applying the models in another
riparian zone in an image from a different year of a different area; although from the same biome.
Each image was then evaluated individually by all of the machine learning models.

3. Results

Table 4 shows the performance of the machine learning algorithms in the proposed task regarding
the multiple dates of analysis for the riparian zone of the Paraná River (Figure 2). As previously
explained, all models were trained on 50% of the sampling data and tested with the remaining 50% for
a total of 14 Sentinel-2 imagery (Table 1) with the spectral bands’ number 2,3,4, and 8 (blue, green, red,
and, near-infrared bands, respectively), with 10 m of spatial resolution.
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Table 4. Performance evaluation applying the trained model on all dates with different models.

Algorithm—Date Accuracy (%) F1-Measure (%) Precision (%) Recall (%) Kappa (%)

RF—June 2018 86.10 84.35 73.64 98.70 72.30
RF—July 2018 86.10 84.35 73.64 98.70 72.30

RF—August 2018 96.55 89.55 82.55 96.55 75.10
RF—September 2018 97.07 90.74 84.41 97.07 75.70

RF—October 2018 94.79 94.60 89.89 99.84 89.60
RF—November 2018 93.01 92.63 86.39 99.83 86.00
RF—December 2018 88.38 87.25 78.22 98.64 76.80

RF—January 2019 56.29 38.67 27.10 67.44 13.40
RF—February 2019 80.25 76.29 62.51 97.85 60.70

RF—March 2019 92.92 93.92 95.69 90.87 85.80
RF—April 2019 97.13 97.19 97.90 96.50 94.20
RF—May 2019 86.28 85.39 78.86 93.10 72.60
RF—June 2019 95.42 95.38 93.08 97.80 90.80
RF—June 2020 67.48 58.22 44.57 83.91 35.50

SVM—June 2018 90.38 89.62 81.76 99.16 80.80
SVM—July 2018 88.02 82.77 77.52 88.02 81.55

SVM—August 2018 85.25 81.67 78.10 85.25 80.77
SVM—September 2018 86.39 84.59 73.48 99.65 72.90

SVM—October 2018 96.79 96.76 94.19 99.46 93.60
SVM—November 2018 93.60 93.46 89.89 97.32 87.20
SVM—December 2018 91.89 91.70 88.18 95.52 83.80

SVM—January 2019 84.61 83.21 75.03 93.39 69.30
SVM—February 2019 80.93 78.30 67.68 92.89 62.00

SVM—March 2019 91.27 91.74 95.32 88.41 82.50
SVM—April 2019 95.81 95.90 96.46 95.35 91.60
SVM—May 2019 93.03 92.87 89.37 96.66 86.10
SVM—June 2019 95.87 95.92 95.50 96.33 91.70
SVM—June 2020 82.94 80.08 67.47 98.48 66.00
DT—June 2018 92.27 92.64 95.75 89.73 84.50
DT—July 2018 94.83 94.81 92.91 96.79 89.70

DT—August 2018 91.72 91.49 87.58 95.76 83.50
DT—September 2018 92.41 92.09 86.84 98.02 84.90

DT—October 2018 92.61 92.62 91.18 94.11 85.20
DT—November 2018 89.25 89.22 87.49 91.02 78.50
DT—December 2018 87.60 87.55 85.73 89.44 75.20

DT—January 2019 46.20 45.70 44.53 46.93 −07.50
DT—February 2019 80.78 81.17 81.50 80.84 61.50

DT—March 2019 91.63 92.17 96.90 87.87 83.20
DT—April 2019 95.74 95.91 98.29 93.65 91.50
DT—May 2019 68.26 74.77 92.50 62.74 36.00
DT—June 2019 97.61 97.66 97.87 97.44 95.20
DT—June 2020 67.95 75.07 94.94 62.08 35.30
NB—June 2018 96.74 96.71 94.45 99.09 93.50
NB—July 2018 94.22 93.95 93.69 94.22 91.25

NB—August 2018 95.58 94.90 94.22 95.58 92.58
NB—September 2018 90.49 89.69 81.35 99.93 81.00

NB—October 2018 78.95 81.24 89.67 74.26 57.70
NB—November 2018 61.70 68.74 82.85 58.74 22.80
NB—December 2018 70.93 75.41 87.70 66.14 41.50

NB—January 2019 76.69 78.09 81.73 74.76 53.30
NB—February 2019 80.75 82.58 89.77 76.46 61.40

NB—March 2019 92.88 93.24 96.55 90.15 85.70
NB—April 2019 96.30 96.42 97.99 94.91 92.60
NB—May 2019 94.16 94.26 94.37 94.16 88.30
NB—June 2019 97.62 97.66 98.04 97.29 95.20
NB—June 2020 86.61 87.91 95.78 81.24 73.10

To help illustrate the performance of ML algorithms in multiple dates (Table 4), we organized
a box-plot indicating the F1-measure and other evaluation metrics of the applied models (Figure 4).
Here, the overall results indicated that the performance of the algorithms, when considering all of the
dates, were similar. However, DT outperformed slightly other ML models, since it returned the highest



Remote Sens. 2020, 12, 4086 9 of 16

F1-measure value. The DT then is the most recommended approach in this regard. The NB model,
however, may be useful since it is a simple model and does not require substantial processing costs.
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Although the five evaluated ML algorithms (Figure 5) can be assumed with similar performance
visually, the quantitative analysis (Table 4) has demonstrated that the best learners in terms of kappa
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value were DT, NB, SVM, and RF, respectively. We noted that DT and NB techniques presented
the same kappa value (95.20; see Table 4), but the NB, in general, had a slight increase in the Recall
value compared to the DT (see Figure 4), which means that NB classified some non-forest areas as
forest more than the DT algorithm. In this regard, the DT learner, while returning similar evaluation
metrics as the other algorithms, returned better quali-quantitative results. Considering a forest
management perspective, the false-positives (i.e., non-vegetation classified as vegetation) are more
harmful than false-negatives.

We verified that for some areas, the DT and RF algorithms were not affected by sparse vegetation
characteristics (Figure 6) like the SVM and NB were (Figure 7). These areas present a higher contribution
from soil brightness pixels and other types of vegetation covers that offer some potential challenges for
the classification.
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The algorithms also faced additional challenges in mapping forest vegetation in riparian zones,
and negative examples are presented in Figure 8. This classification error possibly is due to the cloud
cover interference that this part of the Sentinel-2 scene presented. The algorithms classified part of the
clouded area over the water-body as vegetation. Nonetheless, the DT learner was still highly accurate
in the proposed task when considering the land area contained within the riparian zone, as our training
samples only considered these areas. Figure 9 shows a positive example in which the DT algorithm
was successful in identifying forest vegetation in a complex environment.
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Based on these observations (Figures 8 and 9) and the results of the quantitative approach
(Table 4), the DT was defined as the overall best technique among the evaluated models. To verify the
generalization capability of the ML techniques, we performed additional tests with different dates in
another riparian zone, but from the same biome. The generalization ability of a model refers to training
it with images from a geographic area and testing its performance in other areas. This additional test
was made with four algorithms (RF, SVM, DT, and NB). Therefore, the models, which were trained
using images from the riparian zone of the Paraná River, were tested in the riparian zone located
in the Paranapanema River. This river is located near one of the last largest fragments of primary
vegetation from the Atlantic Biome, known as the Devil’s Mount. It is worth mentioning that we
applied the four algorithms on two different dates in this area, considering the rainy summer and
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dry winter seasons. For that, we labeled a total of 147 features (polygons) representative of forest
vegetation and 147 features of non-forest vegetation as data for testing the models, following the same
criteria as the previous labeling. Table 5 shows the results, which returned high accuracies on all dates.
Two representative dates of each year were considered in this analysis.

Table 5. Performance evaluation of four algorithms applying the trained model on different dates in
the Paranapanema River.

Algorithm—Date Accuracy (%) F1-Measure (%) Precision (%) Recall (%) Kappa

RF—December 2018 96.12 97.65 96.71 98.61 86.50

RF—June 2019 98.67 99.21 99.57 98.85 95.10

SVM—December 2018 99.08 99.44 98.92 99.98 96.70

SVM—June 2019 98.68 99.21 99.81 98.62 95.10

DT—December 2018 95.65 97.42 98.43 96.43 83.60

DT—June 2019 99.04 99.42 99.87 98.99 96.50

NB—December 2018 94.39 96.71 98.88 94.63 77.70

NB—June 2019 98.90 99.35 99.67 99.03 96.00

Considering the scene from December 2018, we verified that all algorithms present a decrease in
performance in terms of kappa (Table 5). This is probably related to the cloud cover influence on this
image, since, concerning June 2019, it presented 3,57 more times cloud cover (Table 1). The DT was
the best algorithm among the evaluated models in terms of F1-measure, proving its generalization
capability. To help ascertain the relationship between the spectral bands and the predictions, we present
in Appendix A our decision tree models’ structure.

4. Discussion

The approach presented here is appropriated to map forest vegetation using satellite multispectral
imagery of medium-spatial resolution. Our particular interest was to investigate the potential of
machine learning algorithms and measure their variation in performance when applied to Sentinel-2
images for this task in riparian zones. The main advantage of this procedure is that free-available orbital
images are used as the dataset, consisting of a low-cost method to support different environmental tasks,
like monitoring of landscapes and forest management. In this regard, environmental practices could
benefit from it, and future researches could be guided properly in terms of data and temporal analysis.

Studies [4,15] have shown that ML techniques are an efficient approach to map different land use
and land cover classes, including forest vegetation, and our trials demonstrated that some algorithms
can perform this task with higher accuracy than the others. The DT algorithm has been characterized
as a simple and fast model for many applications in the remote sensing domain [25,26]. It was already
characterized as more accurate, has less error rate, and is easier to apply when compared to other
known methods in similar research [27]. In our investigation, the DT algorithm achieved satisfactory
results both at different dates and locations. Visually, this algorithm returned better results than
others, moreover in areas that were not sampled. It also returned some variation in its accuracy when
regarding different dates, although fewer than most of the others (Figure 4).

The performance of the machine learning algorithms in our research was similar to those
encountered in other studies [14,28,29]. In subtropical forest areas, a study [30] was able to obtain a
kappa coefficient (k) of 0.74 for the RF algorithm using WorldView-2 imagery. The authors also improved
their classification by adopting LiDAR data, resulting in metrics similar to ours. However, it should be
highlighted that both WorldView-2 images and LiDAR surveying are expensive approaches, differently
from our proposed method herein that is free. Others studies also presented high performances in
separating forest areas from other types of land covers, like detecting natural forest in Sentinel-2 images
with the RF algorithm [31], and separating forest healthy vegetation from damaged vegetation using,
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in this approach, deep neural networks, and returning 92% accuracy [32]. We can observe that, in our
case of study, the obtained results are similar in terms of accuracy value, even though when a deep
learning strategy is adopted, like in [32].

The strategy of adopting images from different dates was also encountered in related studies [14,15].
The temporal resolution is important and has been regarded as a more relevant feature than the spectral
and spatial resolution when considering vegetation classification tasks [33]. In a recent study [14],
the overall best accuracies were obtained during the winter season, something also observed in our
approach. The winter period in the riparian region investigated presents less atmospheric interference
than the other periods. However, the spectral behavior from the tree fragments may vary, as some
species reduce the number of leaves during this season. Regardless, the main aspect remains the
presence of cloud interference, and that may explain the differences in accuracy of other seasons
(Table 4), such as summer, in which most of the images possess some sort of atmospheric interference.

Regarding vegetation phenology, few studies, to the best of our knowledge, evaluated different
subclasses of forest-type with multispectral medium-spatial resolution remote sensing imagery and
machine learning algorithms. Recently, in [14], the authors used multi-temporal Sentinel-2 images
to capture the phenological differences between vegetation classes. This study implemented a 60:40
division between training and testing samples and determined that the classification of different
phenologies was better with the SVM (74% accuracy) and NN (72% accuracy) models, returning
superior results when compared against other algorithms, like RF (65% accuracy). Nonetheless, it is still
difficult to evaluate different phenologies in medium-spatial resolution imagery, and future research
could investigate the performance of these methods to map subtypes of forest in riparian zones by
implementing other types of data to feed their models.

Another important observation to be made is related to the generalization capability of the machine
learning algorithms. These algorithms, unlike other types of traditional classification models, such as
Maximum Likelihood, can improve their performance and learning capability when considering more
and different informative data for training [7,9]. In this aspect, it is possible to adopt the models for
different scenarios, providing that enough characteristics are available for learning during its training
phase. In our study, by implementing a 50:50 division between both training and testing samples,
we demonstrated that most of the algorithms returned satisfactory performances and that most of them
can be applied for different seasons throughout the year. The results obtained in a different riparian
zone (Table 5) help to demonstrate the applicability of these models.

In short, our model was trained with data from one riparian zone, related to the Paraná river, and
was able to map the forest vegetation considering different conditions (dates and areas) in the riparian
zone of another river, known as the Paranapanema. This last experiment showed that the DT model,
as well as the others to some extent, can be applied to different sites. As shown in Table 5, the worst
results obtained in this area occurred during the rainy season (which happens from December to
January in this region). As previously explained, the reduction in these dates could be explained
mainly because the rainy season impacts the spectral response of vegetation [5], as well as promotes
different atmospheric conditions that could also affect it such as the increase in cloud cover.

In a general sense, the machine learning algorithms investigated in this study can be considered a
robust approach to classify forest-areas in multispectral imagery across seasonal periods. As we only
implemented images from the Sentinel-2 sensor, this approach is suitable for low-cost classification
models that intend to monitor areas like the ones adopted here. Nonetheless, other types of data
may help in improving the accuracy in dates that did not return similar accuracies (Table 4) as the
remaining pattern from the rest of the year. One study [31] indicated that a combination of texture
metrics from Sentinel-2, seasonality metrics from Landsat time-series, and topography metrics from
the SRTM digital elevation model are important features to be incorporated and fed to these models,
helping to improve their overall performances in closed canopy natural forest classification.
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5. Conclusions

Here, we evaluated the performance of multiple machine learning models for mapping forest
vegetation in riparian zones using multispectral images collected by an orbital sensor, embedded in
the Sentinel-2 platform. Our approach demonstrated that the DT algorithm presented better overall
accuracy in the aforementioned challenge. However, all tested methods returned high accuracies,
which could also be considered appropriate to perform this task. As a contribution, we concluded
that the DT algorithm can be used in different images and geographic areas throughout the year, and
this approach may be implemented into other forest vegetation mapping tasks. Our framework is
appropriate to accurately map forest-type in riparian zones and future research may benefit from the
information presented here.
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Appendix A

To help ascertain the relationship between the spectral bands and the predictions, we present
in this section our decision tree models’ structure in text form. This structure can be accessed via
the link <https://github.com/OscoLP/remotesensing-981921_DecisionTree/blob/main/Structure>, with
additional information regarding it. The model was constructed with training samples from different
dates, collected at the riparian zone of the Parana river. The presented structure is from the pruned
tree model, with a total of 394 leaves and 787 nodes.
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