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Abstract
Sewage effluent effects on the biochemical parameters of Astyanax bimaculatus organs were investigateted. Treated sewage
was collected in a treatment plant; 43 compounds, among them, pharmaceuticals and hormones, were investigated. Caffeine,
ciprofloxacin, clindamycin, ofloxacin, oxytetracycline, paracetamol, sulfadiazine, sulfamethoxazole, sulfathiazole and
tylosin waste was detected in the collected material. Fish were divided into four groups: control, TSE (treated sewage
effluent), TSE+ P (TSE with increased concentration of five pharmaceuticals) and PTSE (TSE+ P post-treated with O3/
H2O2/UV). Biochemical parameters were evaluated in different organs after 14-day exposure. TBARS levels increased
significantly in the brain of animals in the TSE and TSE+ P groups in comparison to the control. There was significant
reduction in TBARS levels recorded for the liver, muscle and gills of animals in the PTSE group in comparison to those of
animals in the other groups. AChE activity reduced in the muscle of animals in the groups showing the highest
pharmaceutical concentrations. CAT activity in the liver of animals in groups exposed to pharmaceutical effluent was
inhibited. GST activity increased in brain of animals in the TSE+ P and PTSE groups, whereas reduced levels of this
activity were observed in liver of animals in the TSE group. Increased GST activity was observed in the brain of animals in
TSE+ P and PTSE groups. Based on integrated biomarker response values, the TSE+ P group presented greater changes in
the analyzed parameters. Results point out that pharmaceutical waste can cause oxidative stress, as well as affect biochemical
and enzymatic parameters in Astyanax sp. Post-treatment can also reduce damages caused to fish, even in case of the likely
formation of metabolites. Based on these results, these metabolites can be less toxic than the original compounds; however,
they were not able to fully degrade the pharmaceutical waste found in the sewage, which can interfere in fish metabolism.
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Introduction

Pharmaceuticals in aquatic environments has become a
global concern due to adverse effects caused by them on
both ecosystems and human health (Liu et al. 2018). The
main disturbances are observed in the biochemical systems
of living organisms and they are caused by highly stable
and persistent substances that are discharged in the envir-
onment (Verlicchi et al. 2012; Cortes-Diaz et al. 2017). The
introduction of complex wastewater mixtures from treat-
ment plants presenting low pharmaceuticals’ removal effi-
ciency is the primary source of these compounds in the
environment, especially in surface water (Li 2014; Knopp
et al. 2016; Balakrishna et al. 2017; Cortes-Diaz et al. 2017;
Sehonova et al. 2017; Felis et al. 2020). However, animal
waste discharge in the soil and in water (Verlicchi et al.
2012), as well as clandestine domestic waste disposal,
inappropriate disposal of medicines and packages, landfills
and leaks in sewage network (Li 2014; Gavrilescu et al.
2015; Giebultowicz and Nałecz-Jawecki 2016) also con-
tribute to contamination by pharmaceuticals.

Previous studies have described a series of (eco)tox-
icological effects caused by pharmaceuticals on the envir-
onment, which leads to reproductive and growth disorders
in animals and humans (Carlsson et al. 2006; Galus et al.
2013; Liu et al. 2018) to damages to algae chloroplasts (Liu
et al. 2018), water toxicity (Verlicchi et al. 2012; Galus
et al. 2013; Ebele et al. 2016; Liu et al. 2017) and to the
selection of multi-resistant microorganisms (Klatte et al.
2017) that pose global threat to human and animal health—

many bacterial species have developed some resistance to
antimicrobial agents (Felis et al. 2020; Booth et al. 2020).
Antimicrobial resistance (AMR) is triggered by the bacter-
ia’s ability to become resistant to antibiotics through
mutation, as well as by the acquirement of genes that pro-
vide resistance to antimicrobials. Accordingly, AMR
accounts for thousands of deaths worldwide, on a yearly
basis. These numbers tend to increase due to the increas-
ingly expressive presence of pharmaceuticals in the envir-
onment (O’Neill 2016; Fies et al. 2020). Yet, (eco)
toxicological effects are associated with the increased
incidence of cancer in humans’ reproductive system and of
endometriosis (Aquino et al. 2013). According to Farré
et al. (2008), Velicchi et al. (2012) and Li (2014), anti-
depressants, antibiotics, antipsychotics, cardiovascular
drugs, antineoplastics, as well as natural and synthetic
hormones, are the therapeutic classes of pharmaceuticals
presenting the highest (eco)toxicological potential.

It is very difficult to identify (eco)toxicological effects due
to lack of acute toxicity observation in organisms, even at
significant concentrations (Morley 2009), since toxicity does
not follow a uniform standard applicable to global assess-
ments (Guo et al. 2020). In addition, in order to reduce or
eliminate pharmaceuticals from effluent, it is essential
applying advanced treatment systems to retain or oxidize
pharmaceuticals. Recent studies have indicated that advanced
oxidative processes (AOPs) used to associate ultraviolet
radiation, hydrogen peroxide and ozone, among others, can
be highly efficient (99%) in removing certain pharmaceu-
ticals in aqueous matrices (Anjali and Shanthakumar 2019)
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and also reduce toxicological risks (Alvim et al. 2020; Guo
et al. 2020). However, unknown effects of metabolites can be
generated by oxidation; their toxicity can be lower, higher or
equivalent to that of the original compounds (Verlicchi et al.
2012; Gavrilescu et al. 2015; Azuma et al. 2016; Giannakis
et al. 2017). Therefore, it is essential assessing the toxicity
rates in order to estimate the potential risks of treating was-
tewater through AOPs (Guo et al. 2020). Nevertheless, bio-
chemical changes in organisms use to be the first responses to
environmental changes that can be detected and quantified,
mainly those at enzymatic activity level (Clasen et al. 2014;
Pérez et al. 2018).

Thus, assessing biomarkers in fish is an alternative to
understand chronic (eco)toxicological effects related
to fauna exposure to different chemical substances and to
emerging pollutants likely found in aqueous matrices
(Clasen et al. 2014; Braz-Mota et al. 2015; Cortes-Diaz
et al. 2017; Guiloski et al. 2017; Pérez et al. 2018) that have
been included in environmental improvement programs
(Liu et al. 2018). Biomarkers belonging to different bio-
chemical processes, such as the level of substances reactive
to thiobarbituric acid, used to assess oxidative damage, the
activity of acetylcholinesterase enzymes to determine neu-
rotoxicity, and the catalase and glutathione S-transferase in
antioxidant and detoxification activity are important tools to
provide broad answers to contaminants’ action mechanisms
in organisms.

Oxidative stress processes result from unbalance between
oxidatant and antioxidant compounds (Braz-Mota et al.
2015) that can trigger the generation of reactive species or
the inability to defend and/or to change the antioxidant
profile of living organisms (Clasen et al. 2014; Samanta
et al. 2018), to compromise cell and tissue biological
functions, as well as homeostatic balance (Halliwell and
Whiteman 2004; Cortes-Diaz et al. 2017). Enzymatic and
non-enzymatic activities are essential as antioxidant defense
mechanisms to neutralize the effects of reactive oxygen
species (ROS).

Reaching a general conclusion about the severity of
stressors can be a challenging process, mainly when mul-
tiple stressors are taken into consideration; therefore, Inte-
grated Biomarker Response (IBR) (Guerlet et al. 2010) was
used in the present study. IBR use allows combining dif-
ferent biomarker responses observed in the different ana-
lyzed organs and, consequently, provides more
comprehensive and integrative understanding about waste-
water effects on the assessed treatments (Maulvault et al.
2018). In addition, it enables comparing deviations between
biomarkers of specimens collected from polluted and trea-
ted sites to information recorded for the reference site.
Parameters were plotted in star plot to represent the refer-
ence deviation of each assessed biomarker (Olivares-Rubio
et al. 2013).

The aim of the current study was to investigate the
sublethal effects of sewage effluent on the biochemical
parameters and oxidative stress observed in Astyanax
bimaculatus organs by taking into account the constant
exposure of fish to pharmaceutical waste discharged into
surface waterbodies, given their importance to the food
chain and wide geographic distribution in the neotropical
region.

Materials and methods

Origin and collection of effluent with
pharmaceuticals

Assays were conducted with sewage effluent from an
effluent treatment plant (ETP) located in the metropolitan
area of Porto Alegre, Rio Grande do Sul State, Brazil. The
assessed system operates with flow of 2250 ± 250 L s−1, on
average, which serves ~600,000 individuals and consists in
a mechanical preliminary treatment unit to screen and
desanding effluent. These procedures were followed by
biological treatment in UASB reactors and sludge activated
to allow the cyclic treatment at aeration and sedimentation
stage, and disinfection with hydrogen peroxide (H2O2). This
hydrogen peroxide is easily decomposed into oxygen and
water in the presence of catalytic impurities found in the
effluent, and under increased temperature, pH above 5 and
exposure to light, eliminating it before carrying out the post-
treatment.

Treated samples were collected every hour from 07:00 a.
m. to 12:00 a.m. until getting the total volume of 80 L
required for the tests. Non-toxic and high-density poly-
ethylene bottles (HDPE) (20-L capacity)—which were
previously sanitized and rinsed—filled with samples were
used at collection time. The aliquot of 1 L of sample was
collected with amber bottle to determine the pharmaceu-
ticals and hormones in it; the sample was refrigerated at
±4 °C until analysis time.

Part of the collected effluent was used to prepare two
other treatments, which were described in the experimental
project. These treatments were also subjected to analysis of
biochemical parameters and oxidative stress.

Determining the presence and concentration of
pharmaceuticals and hormones in effluent

The treated effluent sample was subjected to analysis
focused on 43 compounds, including human prescription
pharmaceuticals, veterinary drugs and hormones, at the
Pesticide Residue Analyses Laboratory (LARP), UFSM.
The aliquot of 100 mL of sample was pre-concentrated
through solid phase extraction (SPE) with Strata®-X
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cartridge—adapted from Jank et al. (2014). After sample
preparation, the presence of pharmaceuticals and hormones
was determined through ultra-high performance liquid
chromatography coupled to Waters’ Mass Spectrometry
(UHPLC-MS/MS) (USA). In summary, liquid chromato-
graph; triple quadrupole type MS detector, model Xevo TQ;
electrospray ionization source; Waters Acquity UPLC®
BEH C18 analytical column (50 × 2.1 mm, 1.7 μm) (USA)
and MassLynx 4.1 software data acquisition system
(Waters, USA) were used in the study. Other effluent
samples with pharmaceuticals were subjected to the same
determination process.

Fish

A fish farm provided 72 A. bimaculatus specimens pre-
senting mean weight of 8.0 ± 1.5 g and mean length of
8.2 ± 0.7 cm to be used as test organisms. Animals were
allowed to acclimate for ten days in 250 L non-toxic poly-
ethylene tank filled with clean water dechlorinated through
intense aeration, in static system conditioned to laboratory
conditions under natural photoperiod (12 h dark/12 h light).
Fish fed on commercial Supra® twice a day (42% crude
protein), in amount equivalent to 5% of their body weight,
during the acclimation and experimental periods.

Experimental project

Fish were randomly divided into four groups after the accli-
mation period. Each group comprised 18 fish (n= 6, in tri-
plicate) distributed in 40-L plastic tanks subjected to constant
aeration. The control group was kept in tank with
pharmaceutical-free dechlorinated water. The second group
(TSE) was exposed to treated sewage. The third group
(TSE+ P) was exposed to the same effluent from group two
(TSE) added with ciprofloxacin (11.44 µg L−1), oxytetracy-
cline (7.93 µg L−1), paracetamol (151.17 µg L−1), sulfa-
methoxazole (188.69 µg L−1) and trimethoprim (30.65 µg L−1)
at concentrations higher than the ones predicted to avoid
adverse effects (PNEC) on the most sensitive fish species,
micro-crustaceans or algae (Li 2014). PNEC did not provide
the upper concentration limit for a given medicine or for other
chemicals that have some sort of toxic effect; however, it
intends to point out concentrations that may pose risk to the
species. The greater persistence and/or occurrence in the
sample investigated and observed in other studies in the lit-
erature (Martín et al. 2012; Dinh et al. 2017; Hu et al. 2018;
Bisognin et al. 2018) are other reasons to investigate
the increased concentration of these pharmaceuticals. The
fourth group (PTSE) was exposed to the effluent from
group 3 (TSE+ P) post-treated with O3/H2O2/UV (0.5 mgO3

mgCOD−1/25mgH2O2 L
−1/15min UV). This treatment

resulted from the combination of techniques described by

Zimmermann et al. (2011), Afonso-Olivares et al. (2016) and
Alvim et al. (2020). The association of these processes is also
justified by the study by Xu et al. (2017), who highlighted that
cations (Fe3+, Cu2+, NH4

+) and anions (NO3
−, HCO3

−,
HPO4

2−), as well as high total organic carbon (TOC) levels
inhibit target compound removal in more polluted matrices,
such as effluents. Thus, higher oxidants doses and/or oxidant
association are required and demand longer to fully remove
pharmaceuticals from complex natural samples in order to
avoid the formation of more toxic intermediate products.

The experiment was conducted for 14 days; during this
period, the following mean daily parameters were mon-
itored: dissolved oxygen 5.6 ± 0.8 mg L−1, temperature
23.2 ± 2.6 °C, pH 6.8 ± 0.2, electrical conductivity 462.0 ±
13.6 (μS cm−1) and alkalinity 92.4 ± 3.2, ammonia and
nitrite.

Fish were euthanized through medullary section after the
experimental period, and their body mass and length were
measured. Subsequently, the brain, gills, liver and muscle
were collected for biochemical tests.

Biochemical parameters

Reagents used in the assays were purchased at Sigma
Chemical Co. (St. Louis, MO, USA)—they had high purity
degree (95–99%).

Oxidative damage assay (TBARS)

Lipid peroxidation was estimated in TBARS assay carried
out based on malondialdehyde reaction (MDA) with 2-
thiobarbituric acid (TBA). Results were read in spectro-
photometer, according to Buege and Aust (1978). The assay
was conducted with the gills (50 mg), brain (50 mg), liver
(50 mg) and muscles (250 mg). The organs were homo-
genized in Potassium Phosphate (20 mM) and centrifuged at
5000 × g for 10 min (min). Subsequently, 10% tri-
chloroacetic acid (TCA) and 0.67% thiobarbituric acid were
added to homogenates in order to adjust the sample to the
final volume of 1 mL. Reaction mixtures were incubated at
95 °C for 30 min. Blends were centrifuged at 5000 × g for
15 min after cooling; the optical density was measured
through spectrophotometry, at 532 nm. TBARS levels were
expressed as nmol MDA mg protein−1.

Acetylcholinesterase (AChE) activity assay

AChE activity was determined based on the method
described by Ellman et al. (1961). Brain (30 mg) and
muscle (50 mg) extracts were prepared and homogenized in
50 mM sodium phosphate buffer, at pH 7.2 and 1% Triton
X-100. The homogenate of each tissue was centrifuged for
10 min at 3000 × g at 5 °C; the supernatant was used as
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enzyme source. Aliquots of 50 μL of brain extract super-
natant and 100 μL of muscle extract were incubated at 30 °C
for 2 min in buffer solution added with 100 mM sodium
phosphate, at pH 7.5, and using 10 mM DTNB as chro-
mogen. After incubation, reaction was triggered by acet-
ylcholine (ACh: 0.5 mM) addition as substrate to the
reaction mixture—final volume was 2.0 mL. Absorbances
were determined through spectrophotometry at 412 nm for
2 min. Enzymatic activity was expressed in μmol ACh
hydrolyzed min−1 mg protein−1.

Catalase activity assay (CAT)

CAT activity was determined in gill (50 mg) and liver
(50 mg) tissues through ultraviolet spectrophotometry,
according to Nelson and Kiesow (1972). Tissues were
homogenized in Potter tissue homogenizer—10 volumes
(w/v) of 20 mM potassium phosphate buffer—at pH 7.5 and
centrifuged at 10,000 × g for 10 min at 4 °C. Assay mixture
comprised 2.0 mL of potassium phosphate buffer (50 mM,
pH 7.0), 50 μL of H2O2 (0.3 M) and 10 μL of gill homo-
genate. The same procedure was applied to liver tissue.
Change in H2O2 absorption within 60 s was measured at
240 nm in quartz cuvettes. Catalase activity was calculated
and expressed in μmol min−1 mg protein−1.

Glutathione-S-transferase activity (GST) assay

GST activity was assessed in brain (50 mg), muscle
(250 mg) and liver (50 mg) tissue, based on the procedure
described by Habig et al. (1974) by using 1-Chloro-2,4-
dinitrobenzene (CDNB) as substrate. The aliquot of 2.5 mL
of 20 mM potassium phosphate buffer at pH 6.5 and 50 μL
of the homogenate (from each tissue) were added to a glass
cuvette. Subsequently, 300 μL of 0.1 mol L−1 of GSH and
150 μL of 0.1 mol L−1 of CDNB were added to ethanol.
Enzymatic activity was determined based on changes in
absorbance at 340 nm, by adopting molar extinction coeffi-
cient of 9.6 mM cm−1. GST defines the amount of enzyme
catalyzing the formation of 1 μmol of GS-DNB per minute at
25 °C, at pH 6.5. It was expressed in μmol GS-DNB min−1

mg protein−1.

Integrated biomarker response (IBR)

The “Integrated Biomarker Response Index” version 2
(IBRv2) was calculated based on results recorded in pre-
vious assays to feature the effects of different water con-
ditions and/or pharmaceutical–exposure levels. IBR values
were calculated through log transformation and represented
in star plots (Beliaeff and Burgeot 2002; Sanchez et al.
2013).

Statistical analysis

Results were subjected to analysis of variance (ANOVA)
between groups, which was followed by Tukey’s test—all
biomarkers met results recorded through the normality and
variance homogeneity tests. The value p ≤ 0.05 was statis-
tically significant in analysis results based on procedures
available in the statistical package R, version 3.5.0 (R Core
Team 2016).

Results and discussion

Pharmaceutical waste determination in treated sewage
effluent was performed before the experimental period. The
concentrations of active principles detected in the three
effluent groups are shown in Table 1.

Aside from caffeine, which is psychostimulant, and
paracetamol, which is analgesic and antipyretic, the other
compounds detected in the sewage effluent are antibiotics,
which is one of the classes presenting greater (eco)tox-
icological potential (Farré et al. 2008; Velicchi et al. 2012;
Li 2014; Liu et al. 2018).

Many (eco)toxicity studies carried out with antibiotic
waste detected in different test organisms were compiled by
Liu et al. (2018). These authors described a series of dis-
turbances caused by some of the compounds detected in the
effluent samples in the current study, mainly in fish. Sul-
famethoxazole, for instance, can change ethoxyresorufin-O-
deethylase (EROD) enzyme levels in hepatocytes, which
suggests changes in the capacity to synthesize protein in the

Table 1 Residual pharmaceutical concentrations detected in sewage
effluent samples based on A. bimaculatus specimens exposed to them

Pharmaceutical MDL
(µg L−1)

MQL
(µg L−1)

TSE
(µg L−1)

TSE+ P
(µg L−1)

PTSE
(µg L−1)

Caffeine 0.006 0.020 0.966 0.966 0.031

Ciprofloxacin 0.006 0.020 0.092 11.443* 0.258

Clindamycin 0.006 0.020 0.071 0.071 n.d.

Ofloxacin 0.006 0.020 0.025 0.025 n.d.

Oxytetracycline 0.060 0.200 1.154 7.929* 0.847

Paracetamol 0.012 0.040 1.170 151.170* 0.056

Sulfadiazine 0.006 0.020 0.078 0.078 n.d.

Sulfamethoxazole 0.006 0.020 0.255 188.692* 0.391

Sulfathiazole 0.006 0.020 0.070 0.070 n.d.

Tylosin 0.006 0.020 0.051 0.051 n.d.

Trimethoprim 0.006 0.020 n.d. 30.647* 0.798

MDL method detection limit, MQL method quantification limit, n.d.
not detected, TSE treated sewage effluent, TSE+ P TSE added with
pharmaceuticals, PTSE TSE+ P post-treated with O3/H2O2/UV

*Active principles at increased concentration for the TSE+ P
exposure test

Potential environmental toxicity of sewage effluent with pharmaceuticals



liver, whereas quinolone antibiotics, such as ciprofloxacin,
clindamycin and ofloxacin, tend to persist in the body long
after the exposure period and to increase the risk of
bioaccumulation. Ciprofloxacin can inhibit the activity of
cytochrome P450 enzymes that act in synthesizing hor-
mones in most tissues in organisms. The other detected
antibiotics belonged to the tetracycline and sulfonamide
groups; they cause pro-oxidative effects, change the enzy-
matic activity, as well as toxicity, teratogenesis and
genotoxicity.

Accordingly, based on the TBARS assay, lipid perox-
idation is widely used as oxidative damage biomarker in
studies on fish exposure to xenobiotics (Lenártová et al.
1997; Clasen et al. 2014; Sehonova et al. 2017; Guiloski
et al. 2017; Gonçalves et al. 2018; Samanta et al. 2018).
TBARS levels recorded in the current study for different
organs of A. bimaculatus are depicted in Fig. 1.

Lipid peroxidation is an important consequence of oxi-
dative stress; thus, the TSE and TSE+ P treatments have
evidenced significant increase in TBARS levels in the brain
and gills as response to the control group. However,
TBARS levels in brain and muscle tissue of animals in the
group exposed to the post-treated sewage effluent (PTSE)
did not statistically differ from the control. The liver and
gills of animals in the PTSE group presented reduced lipid
peroxidation levels in comparison to the other groups. In
summary, TBARS levels in all analyzed organs of animals
in the PTSE group were lower than that of the others or, at
least, they were not significant to levels observed for the

control group. This outcome points out the efficiency and
importance of the treatment applied to this group, which
showed reduced oxidative damages in different organs of
fish exposed to the effluent post-treatment.

Lipoperoxidation process was performed through chain
reaction; it highlights the ability of a single radical species to
outspread several deleterious biochemical reactions
(Aguirre-Martínez et al. 2016). Nunes et al. (2015) assessed
the (eco)toxicological risks posed to fish exposed to water
from Santa Maria River, in Brazil. This river is a sewage
receiver. Although these authors did not feature the water
from this river, they observed significant increase in TBARS
levels in fish muscle in comparison to the control group.

Some authors have reported lack of TBARS level
response in fish exposed to medical products (Brandão et al.
2013; Rodrigues et al. 2019; Sehonova et al. 2019); how-
ever, these studies have evaluated the effects of different
pharmaceutical classes, in separate. Accordingly, Ebele
et al. (2016) reported that the complex pharmaceutical
mixture presents greater (eco)toxicity and potential to dis-
turb or change organisms.

The activity of the AChE enzyme, which is related to the
physiological functions of the fish (Dutta and Arends 2003)
and is often reduced in the presence of xenobiotics (Fossi
et al. 1995; Clasen et al. 2014), is another parameter used in
toxicological evaluations. AChE activity results are depic-
ted in Fig. 2.

AChE activity was analyzed in order to determine
whether the tested compounds showed neurotoxic effect on
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A. bimaculatus. There was no significant change in the
AChE activity in brain tissue between the control and the
other groups. However, AChE activity inhibition was
observed in the TSE+ P group in comparison to the con-
trol; it remained in the PTSE group. According to Liu et al.
(2018), Norfloxacin, alone or combination to sulfamethox-
azole, can reduce AChE in aquatic organisms.

The present results are in compliance with those descri-
bed by Nunes et al. (2015), who observed significant AChE
activity reduction in muscle tissue of Astyanax sp. exposed
to water-diluted sewage effluent in comparison to the con-
trol. Similarly to the present study, the authors did not find
significant decrease in AChE enzyme activity in fish brain
tissue in comparison to the control.

The reduced AChE activity in muscle tissue of organisms
exposed to chemical substances can be explained by Dutta
and Arends (2003), who reported that this enzyme is
directly responsible for muscle contraction and relaxation
stimuli. Based on the current results, medicines found in the
analyzed treatments have neurotoxic potential. The inhibi-
tion is related to the action mode of these medicines. Caf-
feine is known to inhibit the AChE activity (Mohamed et al.
2013; Pohanka and Dobes 2013). Changes in TBARS levels
associated with AChE activity inhibition in fish organs
suggest oxidative damage trend in groups exposed to the
highest concentrations of medical waste.

CAT and SOD (which were not evaluated in the current
study) are the main antioxidant enzymes used to neutralize
ROS; converting them into metabolites is less harmful to
organisms (Clasen et al. 2014). CAT enzyme activity results
are shown in Fig. 3.

CAT activity in the liver significantly decreased in
groups exposed to medical waste in comparison to the
control. CAT activity inhibition was reported by Bayni et al.
(1996) after they analyzed fish exposed to domestic and
industrial sewage. According to Zhang et al. (2015) and

Gobi et al. (2018), any decrease in the activity of this
enzyme points toward direct damage inflicted to protein
structure. Gills did not show CAT activity change in any of
the analyzed treatments in comparison to the control group.
This outcome suggests that, although hydrogen peroxide
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was produced by the exposure to different treatments with
medical waste, catalytic degradation was not followed by
increased catalase activity. This hydrogen peroxide likely
accounts for the increased TBARS levels observed in gill
tissue.

However, despite the reduction in ROS removal ability
evidenced by CAT reduction, lack of activity may be the
consequence of the enhanced protection of other antioxidant
defense mechanisms such as GST. The GST activity protects
from oxidative stress, which was significantly higher in brain
and liver tissue of fish exposed to EST+ F (Fig. 4). Such an
increased GST activity and reduced CAT activity, suggest
antioxidant defense system flaws. The increased GST activity
was observed in the liver of animals in the ESPT group in
comparison to the control and EST groups. This outcome
assumingly highlights metabolite formation resulting from
the treatment process the effluent was exposed to. By-product
formation during pharmaceuticals’ degradation by advanced
oxidative processes was reported by several authors (Gavri-
lescu et al. 2015; Azuma et al. 2016; Giannakis et al. 2017).
Resulting metabolites may be less, equivalent or more toxic
than the original compounds, depending on the treatment
process and on the conditions of the environmental matrix
where they are found (Xu et al. 2017).

GST behavior in the brain of Astyanax sp., reported by
Nunes et al. (2015) was the same as the one recorded in the
current study. These authors observed increased enzymatic
activity in the group exposed to water contaminated with
urban effluents and pesticides. The study conducted by

Guiloski et al. (2017) reinforced the hypothesis of increased
GST enzyme activity in liver subjected to detoxification
conditions, since the exposure of Rhamdia quelen to the
concentration of 2.5 μg L−1 of paracetamol recorded
increased enzymatic activity in this organ. Guiloski et al.
(2015) also reported increased GST activity in the liver of
Hoplias malabaricus exposed to 0.3 and 3 μg kg−1 of
dexamethasone; the study by Sehanova et al. (2017), who
assessed the larval-embryo exposure of Cyprinus carpio
individuals to 50 μg L−1 of sodium naproxen and tramadol
hydrochloride mixture.

Increased lipid peroxidation levels in brain tissue, asso-
ciated with decreased AChE enzyme activity in muscle
tissue and CAT in liver tissue, as well as increased GST
activity in liver tissue of fish in the TSE+ P and PTSE
groups, can be explained by the combination of antibiotics
belonging to the fluoroquinolones group (ciprofloxacin and
ofloxacin present in this study) to tetracyclines (oxyte-
tracycline, also found in the current study) that potentiate
toxicity, cardiotoxicity, immunotoxicity and disordered
locomotion behavior development in antagonistic actions
(Liu et al. 2018). Fatty acids are essential for the proper
functioning of the nervous system in fish. However, their
composition and metabolism can be changed by the pre-
sence of xenobiotics, mainly in mitochondria where ROS is
produced; it can change the physiology of the nervous
system. This process turns the brain into one of the organs
most susceptible to changes in the metabolic activity (Oli-
vares-Rubio et al. 2020).
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Biomarker responses are not always clear and easy to
interpret due to their different response patterns in different
organs. Accordingly, the IBR index was calculated based on
the selected biomarkers in order to integrate responses and
to facilitate result interpretations (Fig. 5).

IBR values recorded for the TSE treatment show that
TBARS levels in all analyzed organs, as well as the CAT
activity in gill tissue, were the parameters undergoing major
changes. The trend observed in the TSE group remained in
the TSE+ P group, and this finding confirmed that the
observed effects were mainly caused by the presence of
pharmaceuticals in the sewage.

Based on the IBR values, the TSE+ P group presented
the highest changes in the analyzed parameters, likely due
to the higher concentration of pharmaceuticals in this group.
In addition to TBARS and CAT parameters, GST levels in
all analyzed organs were changed in the TSE+ P group,
and it showed that the higher concentration of antibiotics
has activated the detoxification process in fish belonging to
this group. AChE enzymatic activity inhibition showed
neurotoxic effects on fish, after the addition of pharma-
ceuticals to sewage.

The IBR value recorded for PTSE was lower than that
recorded for TSE+ P; this outcome points out that the post-
treatment was efficient in degrading pharmaceuticals found
in sewage; however, it was not possible to fully degrade
them, but it was possible observing AChE activity

inhibition trend, even after the post-treatment. The GST
activity shows the detoxification efficiency of the treatment
over xenobiotic compounds evidenced by the decreased
TBARS levels recorded for the PTSE group. However, the
detoxifying system was activated and identified the possible
formation of secondary metabolites due to the applied
treatment. Thus, the IBR value recorded for PTSE was
higher than that of TSE, in addition to the possible asso-
ciation with the presence and effects of trimethoprim, which
is an active ingredient added to TSE+ P that was not
completely degraded in the post-treatment.

IBR is a tool used to understand how the set of analyzed
biomarkers is influenced by the exposure to xenobiotics.
Thus, it was possible identifying the most important bio-
markers to weight IBR values under the tested conditions.
TBARS levels in brain and muscle tissue, AChE activity in
muscle tissue and GST in brain and muscle tissue of A.
bimaculatus were more susceptible to the exposure to
sewage added with pharmaceuticals; as well as to evaluate
the efficiency of the post-treatment the sewage was sub-
jected to. The TBARS levels in all tissues became more
efficient after the addition of the GST activity in the muscle
and brain tissue of the exposed fish. The present results
corroborate the findings by Wang et al. (2010), who
observed that the GST activity can be considered a bio-
marker sensitive to fish exposure to complex sewage-related
contaminant mixtures.

Fig. 5 Integrated Biomarker
Response (IBR) index recorded
for A. bimaculatus exposed to
treated sewage effluent (TSE),
TSE added with pharmaceuticals
(TSE+ P) and TSE+ P post-
treated with O3/H2O2/UV
(PTSE), for 14 days. The spokes
indicate the mean IBR index
values of each treatment
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Conclusions

Results have shown that the mixture of pharmaceuticals
detected in the treated sewage effluent was capable of
changing the biochemical parameters of A. bimaculatus in
the assessed organs. Therefore, it can be concluded that,
after conventional treatment, the sewage effluents presented
compounds at concentrations capable of having toxic effects
on Astyanax sp.

Changes in oxidative stress biomarkers were worsened
when the concentration of pharmaceuticals increased in the
effluent. TBARS levels in brain and gill tissues, AChE in
muscle tissue, CAT in liver tissue and GST in brain and
liver tissues showed significant changes in comparison to
the control group. This outcome clearly highlights the risk
and toxicity posed by the mixture of pharmaceuticals found
in fish.

Effluent post-treated with O3/H2O2/UV (PTSE) presented
decreased lipid peroxidation levels in comparison to the
control, and it indicates that metabolites likely formed
during this process have lower toxicity than the original
active principles; however, it was not possible to fully
degrade the pharmaceuticals found in the sewage, which
may be still interfering in the metabolism of fish.
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