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A T M O S P H E R I C  S C I E N C E

Using satellites to uncover large methane emissions 
from landfills

Joannes D. Maasakkers1*, Daniel J. Varon2,3, Aldís Elfarsdóttir1†, Jason McKeever3, Dylan Jervis3, 

Gourav Mahapatra1, Sudhanshu Pandey1‡, Alba Lorente1, Tobias Borsdorff1, Lodewijck R. Foorthuis1, 

Berend J. Schuit1,3, Paul Tol1, Tim A. van Kempen1, Richard van Hees1, Ilse Aben1

As atmospheric methane concentrations increase at record pace, it is critical to identify individual emission sources 
with high potential for mitigation. Here, we leverage the synergy between satellite instruments with different 
spatiotemporal coverage and resolution to detect and quantify emissions from individual landfills. We use the 
global surveying Tropospheric Monitoring Instrument (TROPOMI) to identify large emission hot spots and then 
zoom in with high-resolution target-mode observations from the GHGSat instrument suite to identify the respon-
sible facilities and characterize their emissions. Using this approach, we detect and analyze strongly emitting 
landfills (3 to 29 t hour−1) in Buenos Aires, Delhi, Lahore, and Mumbai. Using TROPOMI data in an inversion, we 
find that city-level emissions are 1.4 to 2.6 times larger than reported in commonly used emission inventories and 
that the landfills contribute 6 to 50% of those emissions. Our work demonstrates how complementary satellites 
enable global detection, identification, and monitoring of methane superemitters at the facility level.

INTRODUCTION

Reducing methane emissions is a priority for curbing climate change 
(1–4). With global methane concentrations increasing at record 
pace (5), identifying sources with high potential for mitigation is a 
crucial first step. A small number of anomalously strong point 
sources (“superemitters”) make up a disproportionately large frac-
tion of total emissions and can often be readily mitigated (3, 6, 7). 
Satellites have the ability to observe atmospheric methane concen-
trations around the world. They can be used to detect and quantify 
strong point sources and characterize emissions at regional and 
national scales for comparison with reported emissions (8). Here, 
we leverage synergies between satellite instruments with disparate 
spatial resolution and coverage to detect strong urban methane hot 
spots, identify major sources responsible for the hot spots, and 
characterize their facility-level emissions.

Emissions from the oil and gas sector have received considerable 
attention (9–15), but there are also major opportunities for emis-
sion mitigation in the waste sector, which accounts for roughly 
18% of global anthropogenic emissions (16). Solid waste emissions 
are caused by the anaerobic decay of organic material in landfills. 
Large historic methane emission reductions reported to the United 
Nations Framework on Climate Change (UNFCCC) by Annex-I 
countries have been related to landfills. Reported solid waste emis-
sions in the United States fell by 38% between 1990 and 2018, and 
emissions in the European Union were nearly halved over the same 
time period (17). However, landfilled waste is expected to grow at 
more than double the rate of population growth between now and 
2050, mainly driven by countries in the tropics (18). As a result, 
global municipal solid waste methane emissions could nearly dou-
ble to 60 Tg a−1 by 2050 (19). Conversely, these emissions could be 
reduced to 11 Tg a−1 using technically feasible reduction strategies 

including active landfill covers, energy recovery, and omitting or-
ganic waste from landfills (19, 20). In this study, we use a multisat-
ellite observing framework to identify, characterize, and monitor 
four high-emitting landfills across the globe, including the ability to 
track emission mitigation measures.

Launched in October 2017, the Tropospheric Monitoring In-
strument (TROPOMI) on the Sentinel-5P satellite provides daily 
global coverage of atmospheric methane concentrations at a spatial 
resolution of up to 5.5 × 7 km2 (21, 22). These data can be used to 
detect and quantify large emission events (11, 12) with a detection 
threshold of ∼5 t hour−1 under ideal circumstances (8) and regional 
emissions (14, 15), but the spatial resolution is insufficient to unam-
biguously pinpoint emissions from all but the strongest and most 
isolated methane point sources. Meanwhile, target-mode instru-
ments such as GHGSat-D, GHGSat-C1, and GHGSat-C2 (23, 24) 
only observe limited spatial domains (∼10 × 15 km2) but do so at 
fine pixel resolution of up to approximately 25 × 25 m2 (25). When 
targeting locations with enhanced methane concentrations detected 
by TROPOMI, the GHGSat satellites can be used to identify indi-
vidual sources and quantify their emissions. With its global cover-
age, TROPOMI can therefore guide (“tip and cue”) target-mode 
observations and provide a powerful tool to identify strong point 
sources when combined with instruments like GHGSat. Because 
the GHGSat field of view is similar to the footprint of a single 
TROPOMI observation, TROPOMI data from multiple days need 
to be analyzed alongside wind information to determine the target 
locations with sufficient spatial precision.

RESULTS

We use long-term averages of TROPOMI methane data (22) to 
identify locations with persistently enhanced methane concentra-
tions. Some of these locations have been shown to align with areas 
of known oil/gas production (10, 26) or coal mining (27), but we 
also frequently find large enhancements over urban areas, such as 
Buenos Aires (Argentina; Fig. 1A). To identify the best target point 
for GHGSat within these (often spread-out) hot spots, we use a 
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wind-rotation technique. For a potential target point, we rotate the 
data on individual days (e.g., Fig. 1B) based on the wind direction at 
10 m from the ERA5 reanalysis meteorological fields (28), such that 
the wind vector is always oriented to the north. Where the target 
aligns with the methane source, the downwind concentrations are 
consistently enhanced compared to those upwind, resulting in a 
northward-oriented plume signal in the oversampled average of the 
rotated data (Fig. 1C) (29–32). By evaluating wind rotations for a 
dense grid of rotation points covering the area of interest, we can 
find which rotated average shows the largest downwind enhance-
ment and thus pinpoint the source’s location to within a few kilo-
meters (see Materials and Methods). We apply this wind-rotation 
method to 2018–2019 TROPOMI data over Buenos Aires and find 
the optimal target (34.53°S, 58.60°W) within 2 km of the Norte III 
landfill. We follow the same procedure for Delhi (India), Lahore 
(Pakistan), and Mumbai (India), where we also identify landfills as opti-
mal targets for GHGSat observations (see Materials and Methods).

Figure 2 shows a sample of typical methane plumes detected by 
GHGSat-C1/C2 from the Norte III (Buenos Aires), Lakhodair (Lahore), 
Kanjurmarg (Mumbai), and Ghazipur (Delhi) landfills. Plume shapes 
are generally consistent with the wind direction from the GEOS-FP 
meteorological reanalysis. To quantify the emissions, we use GEOS-
FP wind speeds (the method is independent of the wind direction) 
in an integrated mass enhancement (IME) calculation (33, 34). The 
IME method relates source rate Q to the total excess methane mass 
in the plume. Previous studies used large-eddy simulations (LESs) 
of methane point sources to calibrate the Q = f(IME) relationship. 
Here, we perform an area-source calibration that is more appropriate 
for application to landfills, where emissions may originate diffusely 
from a surface (see Materials and Methods). We estimate mean 
methane emission rates between 3 and 29 t hour−1 for the four land-
fills [Table 1; full time series including GHGSat-D observations 
starting in December 2019 (fig. S8) are shown in fig. S7]. Whenever 
there are clear-sky GHGSat-C1/C2 observations over the four sites, 
we detect emission plumes. Uncertainty in the estimated emissions 
(see Materials and Methods) and uncertainty in wind direction 

increase with decreasing wind speed (35), which can be seen from 
the mismatch between plume direction and wind vector for the 
16 February 2021 observation of the Ghazipur landfill (Fig. 2D). 
The mean emissions that we find for the Ghazipur landfill are with-
in the range of 1.4 to 3.3 t hour−1 found for 2015 using emission 
models (36).

The fine resolution of GHGSat observations permits attribution 
of emissions to different sections of the landfills. While emissions 
from the Indian and Pakistani landfills appear widely distributed 
across the sites, emissions from the Norte III landfill originate 
mainly from the active module on the western side. This part of the 
landfill accounts for 87% of the detected emissions shown in Fig. 2 
and only has intermediate covering, whereas the older eastern areas 
of the landfill were covered and closed in 2014 and 2018 using a 
1.2-m cover with an active gas collection system. Emissions origi-
nate specifically from the two active surfaces on the northwest and 
southwest of the active module (fig. S11) that receive waste from the 
city and province of Buenos Aires, respectively. At the active surfaces, 
waste is continuously deposited, and the intermediate cover is relo-
cated because of waste being added. Several vent wells have been 
installed as temporary mitigation tools in the active module, but the 
active surfaces provide the largest windows for landfill gas to escape. 
GHGSat-D observations from February 2020 show isolated plumes 
from the individual surfaces on different days (fig. S8). Because of 
the complicated nature of methane migration through the landfill, 
emissions are difficult to predict, and no measurements are taken 
on the ground to characterize them. The GHGSat imagery shown 
here demonstrates how satellites can add information at a spatial 
scale finer than that of inventory calculations.

Total methane generation reported by the Norte III landfill for 
2019 is equivalent to 16.5 t hour−1 and is calculated on the basis of 
the UNFCCC methodology (37) incorporating landfill-specific in-
formation on the disposed waste, landfill architecture, methane 
fraction, and climate. Emissions are calculated per module of the 
landfill, and the methane generation estimate does not take into ac-
count the gas extraction for the closed modules, which should 

Fig. 1. TROPOMI observations over Buenos Aires (Argentina). (A) Mean 2018–2019 TROPOMI methane concentrations oversampled (i.e., accounting for the full foot-

print of the observation) on a 0.01° grid. The Norte III landfill is indicated by the black cross; also shown are a GHGSat window centered on the TROPOMI-derived target 

(thick lines) and the Greater Buenos Aires municipalities [thin lines (60)]. (B) A single TROPOMI overpass on 9 June 2019 exhibiting a methane plume downwind of 

Buenos Aires with wind arrows representing ERA5 10-m winds (28). (C) The 2018–2019 wind-rotated average giving a clear (north-oriented) plume signal indicating a 

concentrated source.
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substantially decrease net emissions. Whereas total methane gen-
eration is close to the GHGSat emission estimates (which average 
29 t hour−1 but 21 t hour−1 excluding the highest quantification as an 
outlier), emissions from the active module (which has an extraction 
system under construction) are reported at just 4.3 t hour−1 for 2019. 
The GHGSat observations (2020 to 2021) therefore indicate that 
emissions from the active surface may be underestimated, while 
emissions from the closed modules are much lower and not always 

detected as plumes. On the 2 days where individual closed-module 
plumes are detected, they account for only 8 to 13% of total emis-
sions from the landfill. This shows that the covering and extraction 
system are largely successful and that emissions from the landfill 
could decrease quickly once the active surfaces are closed.

To put these emissions in context, we also quantify emissions 
from the surrounding urban areas using 2020 TROPOMI data. 
Emissions are estimated using the Weather Research and Forecasting 

Fig. 2. Methane plumes observed by GHGSat-C1/C2. (A) Norte III (Buenos Aires, Argentina), (B) Lakhodair (Lahore, Pakistan), (C) Kanjurmarg (Mumbai, India), and 

(D) Ghazipur (Delhi, India) landfills in 2020 and 2021. Concentrations are plotted over aerial imagery. Wind directions are from GEOS-FP (52), and emission quantifications 

(Materials and Methods) are shown in the legend. The leftmost plume in (A) is truncated at the edge of the viewing domain and quantified at 19.1 ± 6.7 t hour−1; the 

other plume from the landfill and plume across the river (circumscribed by the white boxes) are quantified at 2.7 ± 1.0 and 1.6 ± 0.6 t hour−1, respectively. The plume 

across the river is not incorporated in the estimate of the landfill’s total emissions.

Table 1. City-level and facility-level emissions for the four landfills quantified using TROPOMI and GHGSat observations respectively (t hr–1).  

Buenos Aires Delhi Lahore Mumbai

City-level inventory* 22 28 25 17

City-level TROPOMI† 58 (55–64) 40 (38–45) 50 (47–54) 37 (28–40)

Facility-level GHGSat‡ 28.6 (15.8–57.8) 2.6 (1.6–3.8) 6.4 (2.3–16.0) 9.8 (6.1–26.0)

Landfill contribution 50% 6% 13% 26%

*Inventory (bottom-up) estimates are the sum of 2012 oil/gas/coal emissions from Scarpelli et al. (39), other 2015 anthropogenic emissions from EDGAR v5 (40), 
and 2017 wetland emissions from WetCHARTS version 1.2.1 (41). Cities are taken as a 0.8° box centered on the population-weighted centroid of the 
city.   †TROPOMI-based estimates are the result of an inversion using 2020 data. Ranges give the range of the inversion ensemble (see Materials and 
Methods).   ‡GHGSat estimates are based on the average of IME quantifications using GHGSat-C1/C2 data from 2020 to 2021. Ranges represent the spread of 
the individual quantifications. The Buenos Aires estimate includes estimates from the active and closed modules.
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chemical transport model [WRF-Chem (38)] at 3-km resolution, 
scaling inventory emissions (39–41) in a gridded Bayesian inver-
sion to obtain the best match between simulated concentrations 
and TROPOMI observations (see Materials and Methods). The 
resulting urban emissions are given in Table 1. We find that com-
monly used emission inventories underestimate Buenos Aires’s 
2020 urban emissions by a factor 2.6 and those of the other cities by 
factors of 1.4 to 2.2. On the basis of the mean of the GHGSat obser-
vations, the observed landfills are responsible for 6 to 50% of the 
city-wide emissions. In Buenos Aires and Mumbai, the individual 
landfills account for more than a quarter of total urban emissions. 
The Norte III landfill makes up about half of Argentina’s solid waste 
emissions (49 t hour−1, with 26 t hour−1 coming from managed 
landfills) reported to the UNFCCC for 2016 (42), which is not un-
expected as the Buenos Aires province houses 40% of Argentina’s 
population (43). The Lakhodair landfill alone accounts for 10% of 
the 2015 UNFCCC-reported solid waste emissions for Pakistan 
(44), despite the Lahore district making up only 5% of the country’s 
population (45). This reflects a need to refine the magnitude and 
spatial representation of landfill and urban emissions in global in-
ventory databases.

DISCUSSION

The complementarity of TROPOMI and GHGSat provides a power-
ful tool to detect, locate, and quantify emissions from strong methane 
point sources around the world. Detections can be used to inform 
operators and regulators and promote action on cost-effective 
methane emission reduction measures. After identification of the 
emitting facility, continued observation allows monitoring of emissions 
and evaluation of mitigation measures. The hybrid methodology demon-
strated here can also be applied with the successors of TROPOMI 
(e.g., Sentinel-5) and be used to guide target-mode hyperspectral 
instruments [e.g., the Precursor and Application Mission (PRISMA) 
(12, 46) and the Environmental Mapping and Analysis Program 
(EnMAP) (47)] or inspection of imagery from global- surveying 
high-resolution multispectral instruments [e.g., Sentinel-2 and 
Landsat (26,  48)] and be supplemented with future intermediate- 
resolution data from instruments such as MethaneSAT (49). Com-
bining these diverse data streams enables global identification of 
strong methane sources followed by facility-level monitoring 
necessary to reduce emissions in the short term, improve emission 
inventories for climate policy, guide ground-based measurement 
campaigns to better understand emissions, and support regulatory 
enforcement.

MATERIALS AND METHODS

TROPOMI data and source localization
TROPOMI is a pushbroom spectrometer that was launched aboard 
the Sentinel-5P satellite in October 2017 (21, 22). It retrieves meth-
ane with daily global coverage from the 2305- to 2385-nm short-
wave infrared (SWIR) band and the 757- to 774-nm near- infrared 
band with 5.5 × 7 km2 resolution at nadir and a swath width of 
∼2600 km at an overpass time of around 13:30 local time.

We use the TROPOMI methane product described by Lorente et al. 
(22) that shows good agreement [−3.4–parts per billion (ppb) average 
bias with 5.6-ppb station-to-station variability] with the Total Carbon 
Column Observing Network (50). For the source localization and 

the TROPOMI-based emission quantification, we use albedo-bias 
corrected data over land, filtered to include only measurements with 
the following: methane precision, <10 ppb; SWIR cloud fraction, 
<0.02; SWIR aerosol optical depth, <0.13 (0.10 for the inversion); 
and SWIR albedo, >0.02.

To identify regions of interest for closer inspection with GHG-
Sat, we oversample 2018–2019 TROPOMI data at 0.01° × 0.01° res-
olution following Zhu et al. (30). In the oversampling approach, the 
full spatial footprint of the observation is taken into account by at-
tributing the observed value to grid cells weighted by the spatial 
overlap of the observation with those grid cells. For a region to be of 
interest, we filter on the basis of the enhancement (defined as the 
difference between the TROPOMI retrieval and the a priori column 
used in the retrieval), require sufficient coverage at the considered 
grid cell and surrounding grid cells to filter anomalous values at the 
edges of the TROPOMI coverage, and require limited local correla-
tion with SWIR albedo, SWIR aerosol optical depth, and coverage 
(fig. S1). Multiple regions of interest result, related to various emis-
sion sources, but here we focus on the Buenos Aires (Argentina), 
Delhi (India), Lahore (Pakistan), and Mumbai (India) urban areas.

After identifying a location of interest, we use a wind-rotation 
technique (29, 32) to pinpoint the potential target location with suf-
ficient precision so the source will fall within GHGSat’s ∼10 × 
15 km2 field of view when targeting this location. The rationale be-
hind this method is that simply averaging the TROPOMI data will 
result in smearing of signal due to varying wind directions on dif-
ferent days. Rotating TROPOMI methane enhancements around a 
source location such that the wind is always pointing north will lead 
to aligning plumes on different days. This is the result of downwind 
concentrations always being larger than upwind concentrations at a 
source location. The rotated 2018–2019 data are then oversampled 
at 0.01° resolution, resulting in an average downwind “plume-like” 
signal. We perform this wind rotation for a full grid of 13 × 13 
points across the region of interest, first distanced at 0.05° (shown 
for Buenos Aires in fig. S2) and subsequently at 0.01° (fig. S3) to 
determine which location has the largest downwind enhancement 
and hence is the most likely location of the source. Wind data come 
from a spatial spline interpolation (at the target location) of the 
hourly 10-m wind field closest in time to the TROPOMI overpass 
from the 0.25° × 0.25° ERA5 reanalysis product (28).

To analyze which rotated image is centered at the most likely 
source location, we compute several metrics based on the oversam-
pled averages (fig. S4). These metrics are the mean enhancement in 
a 0.25° × 0.05° box downwind of the source, the difference between 
that enhancement and the enhancement in the 0.25° × 0.05° box 
upwind, and the maximum concentration downwind of the source. 
We look at the agreement between these metrics to estimate the most 
likely source location, usually best represented by the mean downwind 
concentration. For Buenos Aires, the optimized location is 34.53°S, 
58.60°W ± 0.01°, and all optimized locations are given in table S1. 
The reported uncertainty of estimated location is based on the abso-
lute distance between the two most-separated points for which the 
metrics peak. Where necessary, locations can be fine-tuned using ex-
ternal information from visual imagery or emission databases to ensure 
that the most likely (or maximum number of) emission targets are 
within the GHGSat field of view. This is necessary in Lahore, for 
example, where there is a large diffuse background emission from 
the city. Mean TROPOMI concentrations and rotated averages cen-
tered at the landfills for the three other targets are shown in fig. S5.
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GHGSat data, emission quantification, and uncertainty
GHGSat satellite instruments are wide-angle imaging Fabry-Perot 
spectrometers that retrieve atmospheric methane columns by solar 
backscatter in the 1630- to 1675-nm SWIR spectral range. The 
demonstration instrument GHGSat-D was launched in June 2016 
and observes at around 10:00 local time, with a return time of 2 weeks. 
It has a targeted field of view of ∼10 × 10 km2 with an effective pixel 
resolution of 50 × 50 m2 and is described in detail by Jervis et al. 
(23). Follow-up instruments GHGSat-C1 and GHGSat-C2 were 
launched in 2020 and 2021 with an improved detection limit, effec-
tive pixel resolution of approximately 25 × 25 m2, and a targeted 
field of view greater than ∼10 × 15 km2 (24). The latest instruments 
achieve a median retrieval precision of 1.5% of background across 
all scenes and observing conditions. They can detect point sources 
down to 100 kg hour−1 as determined using controlled releases (51).

We use the IME method (7, 33, 34) calibrated with LESs to quan-
tify emissions with GHGSat observations. Varon et al. (34) calibrated 
IME source-rate retrievals using LESs of methane plumes originat-
ing from point sources. Here, we adopt the same calibration ap-
proach but with a uniform square area source to estimate source 
rates for the landfill plumes detected by GHGSat (Fig. 2). The IME 
method relates the source rate Q to the total methane mass (IME) of 
the plume

  Q =    U  eff   IME ─ 
L

    (1)

where Ueff = f(U10) is an effective wind speed that can be ex-
pressed as a function of the local 10-m wind speed U10, and L is a 
plume length scale commonly defined as the square root of the area 
(A) of the detectable plume:  L =  √ 

_
 A   . The plume area is calculated from 

a binary plume mask that distinguishes plume pixels from back-
ground pixels. We define the mask in the same way as Varon et al. 
(10) did, by applying a threshold to the retrieved columns and 
smoothing the resulting mask. We use 10-m wind speeds from 
GEOS-FP (52).

Calibrating the IME source-rate retrieval involves characterizing 
the effective wind speed for a set of measurement conditions, either 
as a function of U10 (34) or based on the shape of the observed 
plume (53). Here, we use the former approach and compute source 
rates by mapping U10 as reported in the GEOS-FP meteorological 
database to an effective wind speed. We perform five 3-hour-long 
simulations of a 275 × 275–m2 area source representing the active 
surface of a landfill, using a variety of meteorological conditions [a 
range of mixed layer depths (500 to 2000 m) and sensible heat fluxes 
(100 to 300 W m−2)]. Our model setup uses the WRF v3.8 default 
LES case (54, 55) as described by Varon et al. (48), but with an area 
source rather than a point source. In the five-simulation ensemble, 
each simulation covers 3 hours and a 9 × 9 × 2.4–km3 domain with 
25-m horizontal and 15-m vertical resolution. The first hour of each 
simulation is used to spin up turbulence, and data from the last 
2 hours are used to determine the relationship between U10 and Ueff 
in the IME method. In parallel, we also use the point-source simu-
lation ensemble from Varon et al. (48).

Drawing snapshots from these two LES ensembles in 30-s inter-
vals, we obtain 1200 samples each of area- and point-source plumes. 
We scale the snapshots to reflect random source rates in the range 
of 2 to 30 t hour−1. We integrate the snapshots vertically and add 
synthetic measurement noise drawn from a normal distribution 
with mean zero and SD 5% of a 1875-ppb methane background. 

This noise level (retrieval precision) is determined from the GHGSat-D, 
GHGSat-C1, and GHGSat-C2 retrieval fields for the four landfills, 
as the average SD of nonplume methane enhancements across all 
the observed scenes. In this manner, we obtain 2400 GHGSat pseudo- 
observations of point-source and area-source plumes. We then 
follow the methodology of Varon et al. (34) to derive effective wind 
speed functions from the two synthetic plume datasets.

Figure S6 shows the resulting effective wind speed functions for 
area sources and point sources. We find that first-degree polynomi-
als capture the dependence well (0.78 < R2 < 0.86) in both cases. The 
linear fits for the two populations are similar, but the effective wind 
speed is generally higher and more variable for area sources than for 
point sources. This is because area-source plumes are more diffuse 
and tend to have lower enhancements than point-source plumes of 
similar source strength. Weaker enhancements for area-source 
plumes are counterbalanced by higher effective wind speeds to re-
cover the known Q during calibration, and the reduced signal leads 
to higher uncertainty in the effective wind speed needed for each 
plume snapshot. Best-fit lines are computed by robust linear regres-
sion, which assigns less weight to outlier points, to mitigate the 
impact of marginally detectable LES plumes on the effective wind 
speed fit. For the same reason, fig. S6 excludes plumes with IME 
below the 10th percentile of each LES ensemble.

Varon et al. (34) found a similar range of effective and 10-m 
wind speeds for their LES methane point-source plumes, but a 
logarithmic dependence of Ueff on U10 rather than the linear depen-
dence that is shown here. This may be due to differences in spatial 
resolution and/or meteorological settings between Varon et al.’s 
(34) LES ensemble and the ensembles used here. Source rate esti-
mates using a linear or logarithmic fit are, however, similar for the 
range of wind speeds covered by the LES ensembles, where absolute 
differences are, on average, less than 6%. Larger deviations can oc-
cur under low (U10 < 1.5 m s−1) and high (U10 > 6 m s−1) wind con-
ditions. We use the area-source calibration of fig. S6 to report the 
best estimates for the landfill plumes observed by GHGSat (Fig. 2) 
and the point-source calibration to estimate error from uncertainty 
in the source shape.

We estimate the uncertainty in our retrieved source rates simi-
larly to Varon et al. (10), accounting for wind speed error, model 
error in the IME method, and error from measurement noise. We 
include an additional error term to account for uncertainty in the 
shape and spatial extent of the source. The emissions detected by 
GHGSat may originate from a combination of gas extraction wells, 
active working faces, gaps in the landfill cover, and other potential 
methane sources at the target landfills. The true spatial distribution 
of the emissions may therefore be highly complex, but our source 
quantification scheme assumes that emissions are distributed uni-
formly across a 275 × 275–m2 area. To estimate the resulting error, 
for each LES plume, we perform a separate source-rate retrieval 
calibrated with our point-source ensemble and compare the implied 
emission rate Qp with the result Qa from the area-source retrieval. 
We estimate the error from source shape uncertainty as the SD of 
the differences between Qa and Qp for each landfill site, which 
comes to <15% on average. We also calculated the emissions using 
ERA5 10-m wind fields. We find that there is a 9% low bias when 
using ERA5 and GEOS-FP, but the mean absolute relative error be-
tween using ERA5 and GEOS-FP is only 15 ± 13%, easily encom-
passed by the mean wind speed error of 52% used in our reported 
results. Last, since the measurement noise depends on both target 
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scene and satellite instrument, we include an additional error of 
10% for using a single Ueff calibration (assuming 5% noise) to re-
trieve source rates for all four scenes and three satellites. The alter-
native would be to use 12 separate calibrations, but we use 1 for 
simplicity and because, in practice, the error is small. Our additional 
10% error is a conservative estimate from a comparison of Ueff 
functions calibrated with 5% versus 20% retrieval precision, which 
have a mean absolute difference of 8.7%. Combining all sources of 
error in quadrature, we find total uncertainties (1s) of 30 to 79% for 
landfill emissions quantified with GHGSat.

TROPOMI emission quantification and uncertainty
We use version 4.1 of the WRF model (38) to simulate 240 × 
240–km2 domains around the four landfills at 3-km resolution from 
1 January 2020 to 1 January 2021. The simulations use meteorolog-
ical fields from the National Centre for Environmental Prediction 
(NCEP) (56) and initial and 6-hourly boundary conditions at 0.25∘ × 
0.25∘ from the Copernicus Atmosphere Monitoring Service (CAMS) 
(57). Our simulations use the tropical suite of physics options as 
transport configuration and provide hourly output.

We use bottom-up oil/gas/coal emissions for 2012 from 
Scarpelli et al. (39), and the remaining anthropogenic emissions are 
2015 emissions from EDGAR v5 (40). Wetland emissions (2017) 
come from WetCHARTs version 1.2.1 (41) mapped to high-resolution 
wetland maps (58). Bottom-up prior emissions for each of the urban 
areas are given in table S2.

To estimate mean 2020 emissions, simulation output for that 
year is sampled using the TROPOMI averaging kernels at the model 
time step closest to the TROPOMI overpass time. To reduce the im-
pact of possible model errors, we aggregate the TROPOMI observa-
tions and their model equivalents to a daily 0.2° × 0.2° grid and use 
those aggregated data in a Bayesian inversion to optimize state 
vector   ̂  x  

   ̂  x  =  x  A   +  S  A    K   T   (K  S  A    K   T  +  S  O  )   
−1

 (y − K  x  A  )  (2)

with posterior error covariance matrix   ̂  S  

   ̂  S  =  ( K   T    S  O     −1  K +   S  A     −1 )   
−1

   (3)

and averaging kernel A giving the sensitivity of the solution to the 
true state

  A = I −  ̂  S    S  A     −1   (4)

where xA is the prior state vector, SA is the prior error covariance 
matrix, K is the Jacobian based on our WRF simulations including 
the aggregation, SO is the observational error covariance matrix, y 
contains the aggregated TROPOMI observations, and I is the iden-
tity matrix. The posterior error covariance matrix can be normal-
ized to the posterior error correlation matrix   ̂   S  cor     by dividing all 
terms by the square root of the associated diagonal terms.

Our 61-element state vector consists of monthly scaling factors 
on the CAMS boundary conditions to prevent bias in CAMS from 
compromising the inversion results and a 7 × 7 grid to scale the 
bottom-up emissions. When reporting results, the city-level emissions 
are calculated over 0. 8∘ × 0. 8∘ boxes centered on the population- 
weighted city centroids.

The prior error covariance matrix is assumed to be diagonal, and 
we assume errors of 50% for the different emissions and 10% for the 
CAMS boundary conditions. The observational error covariance is 
assumed to be diagonal as well, and the error on individual observa-
tions is estimated as the SD of the prior model-observation mismatch 
(17 ppb for Buenos Aires). If n observations fall within one 0.2° × 
0.2° grid cell, we apply the central limit theorem ( ∼  √ 

_
 n   ).

To estimate the uncertainty in our results, we generate an en-
semble of sensitivity inversions by varying inputs and inversion 
assumptions. We report the range of these sensitivity inversions 
as the uncertainty on our emission estimates. The sensitivity inver-
sions are as follows: (i and ii) increasing and decreasing the prior 
errors by a factor of 2; (iii and iv) using WRF model output sampled 
at the model time steps before and after the mean overpass time; 
(v and vi) performing the optimization with aggregation to 0.15° × 
0.15° and 0.4° × 0.4° grid cells; (vii) offsetting both the latitude and 
longitude of the aggregation grid by 0.1°; (viii) using log-normal prior 
errors on the emissions following Maasakkers et al. (59); (ix) using a 
1% prior error on the CAMS boundary conditions; (x) only using 
TROPOMI data with the highest quality flag (QA = 1); (xi) using the 
TROPOMI data without albedo correction; (xii) using the mean 
observational error for the aggregated observations instead of fol-
lowing the central limit theorem; and (xiii) optimizing just one 
annual CAMS boundary condition scaling factor.

Figure S9 shows the prior and posterior model simulations’ mis-
matches with the TROPOMI observations for 2020 over Buenos 
Aires. The prior model shows a large-scale underestimate across the 
model domain because of underestimated CAMS boundary condi-
tions. This underestimate is corrected by scaling up the boundary 
conditions by, on average, 2.9% in the posterior model (center panel). 
Similar corrections (4 to 5% with some seasonality) are found for 
the other cities. The resulting posterior emissions, scaling factors, 
and the inversion’s averaging kernels for the emission grid are shown 
in fig. S10. The averaging kernels of the inversion show where the 
TROPOMI observations add information to the prior emissions. 
This is mainly the case for the considered urban area, where meth-
ane enhancements are seen in the TROPOMI data. Some bias unre-
lated to local emissions remains in the posterior model–observation 
mismatch. The resulting city-level emissions are given in Table 1.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at https://science.org/doi/10.1126/

sciadv.abn9683
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